- Browse by Author
Browsing by Author "van Binsbergen, Ellen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Disruption of RFX family transcription factors causes autism, attention-deficit/hyperactivity disorder, intellectual disability, and dysregulated behavior(Elsevier, 2021) Harris, Holly K.; Nakayama, Tojo; Lai, Jenny; Zhao, Boxun; Argyrou, Nikoleta; Gubbels, Cynthia S.; Soucy, Aubrie; Genetti, Casie A.; Suslovitch, Victoria; Rodan, Lance H.; Tiller, George E.; Lesca, Gaetan; Gripp, Karen W.; Asadollahi, Reza; Hamosh, Ada; Applegate, Carolyn D.; Turnpenny, Peter D.; Simon, Marleen E.H.; Volker-Touw, Catharina M.L.; van Gassen, Koen L.I.; van Binsbergen, Ellen; Pfundt, Rolph; Gardeitchik, Thatjana; de Vries, Bert B.A.; Immken, LaDonna L.; Buchanan, Catherine; Willing, Marcia; Toler, Tomi L.; Fassi, Emily; Baker, Laura; Vansenne, Fleur; Wang, Xiadong; Ambrus, Julian L., Jr.; Fannemel, Madeleine; Posey, Jennifer E.; Agolini, Emanuele; Novelli, Antonio; Rauch, Anita; Boonsawat, Paranchai; Fagerberg, Christina R.; Larsen, Martin J.; Kibaek, Maria; Labalme, Audrey; Poisson, Alice; Payne, Katelyn K.; Walsh, Laurence E.; Aldinger, Kimberly A.; Balciuniene, Jorune; Skraban, Cara; Gray, Christopher; Murrell, Jill; Bupp, Caleb P.; Pascolini, Giulia; Grammatico, Paola; Broly, Martin; Küry, Sébastien; Nizon, Mathilde; Rasool, Iqra Ghulam; Zahoor, Muhammad Yasir; Kraus, Cornelia; Reis, André; Iqbal, Muhammad; Uguen, Kevin; Audebert-Bellanger, Severine; Ferec, Claude; Redon, Sylvia; Baker, Janice; Wu, Yunhong; Zampino, Guiseppe; Syrbe, Steffan; Brosse, Ines; Jamra, Rami Abou; Dobyns, William B.; Cohen, Lilian L.; Blomhoff, Anne; Mignot, Cyril; Keren, Boris; Courtin, Thomas; Agrawal, Pankaj B.; Beggs, Alan H.; Yu, Timothy W.; Neurology, School of MedicinePurpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis. Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7. We describe their common clinical phenotypes and present bioinformatic analyses of expression patterns and downstream targets of these genes as they relate to other neurodevelopmental risk genes. Results: These individuals share neurobehavioral features including ASD, intellectual disability, and/or ADHD; other frequent features include hypersensitivity to sensory stimuli and sleep problems. RFX3, RFX4, and RFX7 are strongly expressed in developing and adult human brain, and X-box binding motifs as well as RFX ChIP-seq peaks are enriched in the cis-regulatory regions of known ASD risk genes. Conclusion: These results establish a likely role of deleterious variation in RFX3, RFX4, and RFX7 in cases of monogenic intellectual disability, ADHD and ASD, and position these genes as potentially critical transcriptional regulators of neurobiological pathways associated with neurodevelopmental disease pathogenesis.Item TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila(Elsevier, 2021) Goodman, Lindsey D.; Cope, Heidi; Nil, Zelha; Ravenscroft, Thomas A.; Charng, Wu-Lin; Lu, Shenzhao; Tien, An-Chi; Pfundt, Rolph; Koolen, David A.; Haaxma, Charlotte A.; Veenstra-Knol, Hermine E.; Klein Wassink-Ruiter, Jolien S.; Wevers, Marijke R.; Jones, Melissa; Walsh, Laurence E.; Klee, Victoria H.; Theunis, Miel; Legius, Eric; Steel, Dora; Barwick, Katy E.S.; Kurian, Manju A.; Mohammad, Shekeeb. S.; Dale, Russell C.; Terhal, Paulien A.; van Binsbergen, Ellen; Kirmse, Brian; Robinette, Bethany; Cogné, Benjamin; Isidor, Bertrand; Grebe, Theresa A.; Kulch, Peggy; Hainline, Bryan E.; Sapp, Katherine; Morava, Eva; Klee, Eric W.; Macke, Erica L.; Trapane, Pamela; Spencer, Christopher; Si, Yue; Begtrup, Amber; Moulton, Matthew J.; Dutta, Debdeep; Kanca, Oguz; Undiagnosed Diseases Network; Wangler, Michael F.; Yamamoto, Shinya; Bellen, Hugo J.; Tan, Queenie K.G.; Pediatrics, School of MedicineTransportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.