ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "lin, Li"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells
    (SpringerNature, 2017-04-25) Pan, Feng; Wingo, Thomas S.; Zhao, Zhigang; Gao, Rui; Makishima, Hideki; Qu, Guangbo; lin, Li; Yu, Miao; Ortega, Janice R.; Wang, Jiapeng; Nazha, Aziz; Chen, Li; Yao, Bing; Liu, Can; Chen, Shi; Weeks, Ophelia; Ni, Hongyu; Phillips, Brittany Lynn; Huang, Suming; Wang, Jianlong; He, Chuan; Li, Guo-Min; Radivoyevitch, Tomas; Aifantis, Iannis; Maciejewski, Jaroslaw P.; Yang, Feng-Chun; Jin, Peng; Xu, Mingjiang; Department of Pediatrics, School of Medicine
    TET2 is a dioxygenase that catalyses multiple steps of 5-methylcytosine oxidation. Although TET2 mutations frequently occur in various types of haematological malignancies, the mechanism by which they increase risk for these cancers remains poorly understood. Here we show that Tet2-/- mice develop spontaneous myeloid, T- and B-cell malignancies after long latencies. Exome sequencing of Tet2-/- tumours reveals accumulation of numerous mutations, including Apc, Nf1, Flt3, Cbl, Notch1 and Mll2, which are recurrently deleted/mutated in human haematological malignancies. Single-cell-targeted sequencing of wild-type and premalignant Tet2-/- Lin-c-Kit+ cells shows higher mutation frequencies in Tet2-/- cells. We further show that the increased mutational burden is particularly high at genomic sites that gained 5-hydroxymethylcytosine, where TET2 normally binds. Furthermore, TET2-mutated myeloid malignancy patients have significantly more mutational events than patients with wild-type TET2. Thus, Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells, suggesting a novel TET2 loss-mediated mechanism of haematological malignancy pathogenesis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University