- Browse by Author
Browsing by Author "la Fougère, Christian"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease(Elsevier, 2020) Dincer, Aylin; Gordon, Brian A.; Hari-Raj, Amrita; Keefe, Sarah J.; Flores, Shaney; McKay, Nicole S.; Paulick, Angela M.; Shady Lewis, Kristine E.; Feldman, Rebecca L.; Hornbeck, Russ C.; Allegri, Ricardo; Ances, Beau M.; Berman, Sarah B.; Brickman, Adam M.; Brooks, William S.; Cash, David M.; Chhatwal, Jasmeer P.; Farlow, Martin R.; la Fougère, Christian; Fox, Nick C.; Fulham, Michael J.; Jack, Clifford R., Jr.; Joseph-Mathurin, Nelly; Karch, Celeste M.; Lee, Athene; Levin, Johannes; Masters, Colin L.; McDade, Eric M.; Oh, Hwamee; Perrin, Richard J.; Raji, Cyrus; Salloway, Stephen P.; Schofield, Peter R.; Su, Yi; Villemagne, Victor L.; Wang, Qing; Weiner, Michael W.; Xiong, Chengjie; Yakushev, Igor; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L.S.; Neurology, School of MedicineDefining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Item Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease(Wiley, 2021-07-05) Keret, Ophir; Staffaroni, Adam M.; Ringman, John M.; Cobigo, Yann; Goh, Sheng-Yang M.; Wolf, Amy; Allen, Isabel Elaine; Salloway, Stephen; Chhatwal, Jasmeer; Brickman, Adam M.; Reyes-Dumeyer, Dolly; Bateman, Randal J.; Benzinger, Tammie L.S.; Morris, John C.; Ances, Beau M.; Joseph-Mathurin, Nelly; Perrin, Richard J.; Gordon, Brian A.; Levin, Johannes; Vöglein, Jonathan; Jucker, Mathias; la Fougère, Christian; Martins, Ralph N.; Sohrabi, Hamid R.; Taddei, Kevin; Villemagne, Victor L.; Schofield, Peter R.; Brooks, William S.; Fulham, Michael; Masters, Colin L.; Ghetti, Bernardino; Saykin, Andrew J.; Jack, Clifford R.; Graff-Radford, Neill R.; Weiner, Michael; Cash, David M.; Allegri, Ricardo F.; Chrem, Patricio; Yi, Su; Miller, Bruce L.; Rabinovici, Gil D.; Rosen, Howard J.; Pathology and Laboratory Medicine, School of MedicineIntroduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Item Presenilin-1 mutation position influences amyloidosis, small vessel disease, and dementia with disease stage(Wiley, 2024) Joseph-Mathurin, Nelly; Feldman, Rebecca L.; Lu, Ruijin; Shirzadi, Zahra; Toomer, Carmen; Saint Clair, Junie R.; Ma, Yinjiao; McKay, Nicole S.; Strain, Jeremy F.; Kilgore, Collin; Friedrichsen, Karl A.; Chen, Charles D.; Gordon, Brian A.; Chen, Gengsheng; Hornbeck, Russ C.; Massoumzadeh, Parinaz; McCullough, Austin A.; Wang, Qing; Li, Yan; Wang, Guoqiao; Keefe, Sarah J.; Schultz, Stephanie A.; Cruchaga, Carlos; Preboske, Gregory M.; Jack, Clifford R., Jr.; Llibre-Guerra, Jorge J.; Allegri, Ricardo F.; Ances, Beau M.; Berman, Sarah B.; Brooks, William S.; Cash, David M.; Day, Gregory S.; Fox, Nick C.; Fulham, Michael; Ghetti, Bernardino; Johnson, Keith A.; Jucker, Mathias; Klunk, William E.; la Fougère, Christian; Levin, Johannes; Niimi, Yoshiki; Oh, Hwamee; Perrin, Richard J.; Reischl, Gerald; Ringman, John M.; Saykin, Andrew J.; Schofield, Peter R.; Su, Yi; Supnet-Bell, Charlene; Vöglein, Jonathan; Yakushev, Igor; Brickman, Adam M.; Morris, John C.; McDade, Eric; Xiong, Chengjie; Bateman, Randall J.; Chhatwal, Jasmeer P.; Benzinger, Tammie L. S.; Dominantly Inherited Alzheimer Network; Pathology and Laboratory Medicine, School of MedicineIntroduction: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. Methods: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. Results: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. Discussion: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. Highlights: Mutation position influences Aβ burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aβ burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.