ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "de Boer, Ian H."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Participant-Centered Approach to Understanding Risks and Benefits of Participation in Research Informed by the Kidney Precision Medicine Project
    (Elsevier, 2022) Butler, Catherine R.; Appelbaum, Paul S.; Ascani, Heather; Aulisio, Mark; Campbell, Catherine E.; de Boer, Ian H.; Dighe, Ashveena L.; Hall, Daniel E.; Himmelfarb, Jonathan; Knight, Richard; Mehl, Karla; Murugan, Raghavan; Rosas, Sylvia E.; Sedor, John R.; O'Toole, John F.; Tuttle, Katherine R.; Waikar, Sushrut S.; Freeman, Michael; Kidney Precision Medicine Project; Medicine, School of Medicine
    An understanding of the ethical underpinnings of human subjects research that involves some risk to participants without anticipated direct clinical benefit-such as the kidney biopsy procedure as part of the Kidney Precision Medicine Project (KPMP)-requires a critical examination of the risks as well as the diverse set of countervailing potential benefits to participants. This kind of deliberation has been foundational to the development and conduct of the KPMP. Herein, we use illustrative features of this research paradigm to develop a more comprehensive conceptualization of the types of benefits that may be important to research participants, including respecting pluralistic values, supporting the opportunity to act altruistically, and enhancing benefits to a participant's community. This approach may serve as a model to help researchers, ethicists, and regulators to identify opportunities to better respect and support participants in future research that entails some risk to these participants as well as to improve the quality of research for people with kidney disease.
  • Loading...
    Thumbnail Image
    Item
    Genetic Variants Associated With Mineral Metabolism Traits in Chronic Kidney Disease
    (Oxford University Press, 2022) Laster, Marciana L.; Rowan, Bryce; Chen, Hua-Chang; Schwantes-An, Tae-Hwi; Sheng, Xin; Friedman, Peter A.; Ikizler, T. Alp; Sinshiemer, Janet S.; Ix, Joachim H.; Susztak, Katalin; de Boer, Ian H.; Kestenbaum, Bryan; Hung, Adriana; Moe, Sharon M.; Perwad, Farzana; Robinson-Cohen, Cassianne; Medicine, School of Medicine
    Context: Chronic kidney disease (CKD) causes multiple interrelated disturbances in mineral metabolism. Genetic studies in the general population have identified common genetic variants associated with circulating phosphate, calcium, parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23). Objective: In this study we aimed to discover genetic variants associated with circulating mineral markers in CKD. Methods: We conducted candidate single-nucleotide variation (SNV) analysis in 3027 participants in the multiethnic Chronic Renal Insufficiency Cohort (CRIC) to determine the associations between SNVs and circulating levels of mineral markers. Results: SNVs adjacent to or within genes encoding the regulator of G protein-coupled signaling 14 (RGS14) and the calcium-sensing receptor (CASR) were associated with levels of mineral metabolites. The strongest associations (P < .001) were at rs4074995 (RGS14) for phosphate (0.09 mg/dL lower per minor allele) and FGF23 (8.6% lower), and at rs1801725 (CASR) for calcium (0.12 mg/dL higher). In addition, the prevalence of hyperparathyroidism differed by rs4074995 (RGS14) genotype (chi-square P < .0001). Differential inheritance by race was noted for the minor allele of RGS14. Expression quantitative loci (eQTL) analysis showed that rs4074995 was associated with lower RGS14 gene expression in glomeruli (P = 1.03 × 10-11) and tubules (P = 4.0 × 10-4). Conclusion: We evaluated genetic variants associated with mineral metabolism markers in a CKD population. Participants with CKD and the minor allele of rs4074995 (RGS14) had lower phosphorus, lower plasma FGF23, and lower prevalence of hyperparathyroidism. The minor allele of RGS14 was also associated with lower gene expression in the kidney. Further studies are needed to elucidate the effect of rs4074995 on the pathogenesis of disordered mineral metabolism in CKD.
  • Loading...
    Thumbnail Image
    Item
    Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels
    (Nature Publishing Group, 2018-01-17) Jiang, Xia; O’Reilly, Paul F.; Aschard, Hugues; Hsu, Yi-Hsiang; Richards, J. Brent; Dupuis, Josée; Ingelsson, Erik; Karasik, David; Pilz, Stefan; Berry, Diane; Kestenbaum, Bryan; Zheng, Jusheng; Luan, Jianan; Sofianopoulou, Eleni; Streeten, Elizabeth A.; Albanes, Demetrius; Lutsey, Pamela L.; Yao, Lu; Tang, Weihong; Econs, Michael J.; Wallaschofski, Henri; Völzke, Henry; Zhou, Ang; Power, Chris; McCarthy, Mark I.; Michos, Erin D.; Boerwinkle, Eric; Weinstein, Stephanie J.; Freedman, Neal D.; Huang, Wen-Yi; Van Schoor, Natasja M.; Velde, Nathalie van der; de Groot, Lisette C. P. G. M.; Enneman, Anke; Cupples, L. Adrienne; Booth, Sarah L.; Vasan, Ramachandran S.; Liu, Ching-Ti; Zhou, Yanhua; Ripatti, Samuli; Ohlsson, Claes; Vandenput, Liesbeth; Lorentzon, Mattias; Eriksson, Johan G.; Shea, M. Kyla; Houston, Denise K.; Kritchevsky, Stephen B.; Liu, Yongmei; Lohman, Kurt K.; Ferrucci, Luigi; Peacock, Munro; Gieger, Christian; Beekman, Marian; Slagboom, Eline; Deelen, Joris; Heemst, Diana van; Kleber, Marcus E.; März, Winfried; de Boer, Ian H.; Wood, Alexis C.; Rotter, Jerome I.; Rich, Stephen S.; Robinson-Cohen, Cassianne; Heijer, Martin den; Jarvelin, Marjo-Riitta; Cavadino, Alana; Joshi, Peter K.; Wilson, James F.; Hayward, Caroline; Lind, Lars; Michaëlsson, Karl; Trompet, Stella; Zillikens, M. Carola; Uitterlinden, Andre G.; Rivadeneira, Fernando; Broer, Linda; Zgaga, Lina; Campbell, Harry; Theodoratou, Evropi; Farrington, Susan M.; Timofeeva, Maria; Dunlop, Malcolm G.; Valdes, Ana M.; Tikkanen, Emmi; Lehtimäki, Terho; Lyytikäinen, Leo-Pekka; Kähönen, Mika; Raitakari, Olli T.; Mikkilä, Vera; Ikram, M. Arfan; Sattar, Naveed; Jukema, J. Wouter; Wareham, Nicholas J.; Langenberg, Claudia; Forouhi, Nita G.; Gundersen, Thomas E.; Khaw, Kay-Tee; Butterworth, Adam S.; Danesh, John; Spector, Timothy; Wang, Thomas J.; Hyppönen, Elina; Kraft, Peter; Kiel, Douglas P.; Medicine, School of Medicine
    Vitamin D is a steroid hormone precursor that is associated with a range of human traits and diseases. Previous GWAS of serum 25-hydroxyvitamin D concentrations have identified four genome-wide significant loci (GC, NADSYN1/DHCR7, CYP2R1, CYP24A1). In this study, we expand the previous SUNLIGHT Consortium GWAS discovery sample size from 16,125 to 79,366 (all European descent). This larger GWAS yields two additional loci harboring genome-wide significant variants (P = 4.7×10-9 at rs8018720 in SEC23A, and P = 1.9×10-14 at rs10745742 in AMDHD1). The overall estimate of heritability of 25-hydroxyvitamin D serum concentrations attributable to GWAS common SNPs is 7.5%, with statistically significant loci explaining 38% of this total. Further investigation identifies signal enrichment in immune and hematopoietic tissues, and clustering with autoimmune diseases in cell-type-specific analysis. Larger studies are required to identify additional common SNPs, and to explore the role of rare or structural variants and gene-gene interactions in the heritability of circulating 25-hydroxyvitamin D levels
  • Loading...
    Thumbnail Image
    Item
    Rationale and design of the Kidney Precision Medicine Project
    (Elsevier, 2021) de Boer, Ian H.; Alpers, Charles E.; Azeloglu, Evren U.; Balis, Ulysses G. J.; Barasch, Jonathan M.; Barisoni, Laura; Blank, Kristina N.; Bomback, Andrew S.; Brown, Keith; Dagher, Pierre C.; Dighe, Ashveena L.; Eadon, Michael T.; El-Achkar, Tarek M.; Gaut, Joseph P.; Hacohen, Nir; He, Yongqun; Hodgin, Jeffrey B.; Jain, Sanjay; Kellum, John A.; Kiryluk, Krzysztof; Knight, Richard; Laszik, Zoltan G.; Lienczewski, Chrysta; Mariani, Laura H.; McClelland, Robyn L.; Menez, Steven; Moledina, Dennis G.; Mooney, Sean D.; O'Toole, John F.; Palevsky, Paul M.; Parikh, Chirag R.; Poggio, Emilio D.; Rosas, Sylvia E.; Rosengart, Matthew R.; Sarwal, Minnie M.; Schaub, Jennifer A.; Sedor, John R.; Sharma, Kumar; Steck, Becky; Toto, Robert D.; Troyanskaya, Olga G.; Tuttle, Katherine R.; Vazquez, Miguel A.; Waikar, Sushrut S.; Williams, Kayleen; Wilson, Francis Perry; Zhang, Kun; Iyengar, Ravi; Kretzler, Matthias; Himmelfarb, Jonathan; Kidney Precision Medicine Project; Medicine, School of Medicine
    Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.
  • Loading...
    Thumbnail Image
    Item
    A reference tissue atlas for the human kidney
    (American Association for the Advancement of Science, 2022) Hansen, Jens; Sealfon, Rachel; Menon, Rajasree; Eadon, Michael T.; Lake, Blue B.; Steck, Becky; Anjani, Kavya; Parikh, Samir; Sigdel, Tara K.; Zhang, Guanshi; Velickovic, Dusan; Barwinska, Daria; Alexandrov, Theodore; Dobi, Dejan; Rashmi, Priyanka; Otto, Edgar A.; Rivera, Miguel; Rose, Michael P.; Anderton, Christopher R.; Shapiro, John P.; Pamreddy, Annapurna; Winfree, Seth; Xiong, Yuguang; He, Yongqun; de Boer, Ian H.; Hodgin, Jeffrey B.; Barisoni, Laura; Naik, Abhijit S.; Sharma, Kumar; Sarwal, Minnie M.; Zhang, Kun; Himmelfarb, Jonathan; Rovin, Brad; El-Achkar, Tarek M.; Laszik, Zoltan; He, John Cijiang; Dagher, Pierre C.; Valerius, M. Todd; Jain, Sanjay; Satlin, Lisa M.; Troyanskaya, Olga G.; Kretzler, Matthias; Iyengar, Ravi; Azeloglu, Evren U.; Kidney Precision Medicine Project; Medicine, School of Medicine
    Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University