- Browse by Author
Browsing by Author "Zuo, Yuanbojiao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Defective BVES-mediated feedback control of cAMP in muscular dystrophy(Springer Nature, 2023-03-30) Li, Haiwen; Wang, Peipei; Zhang, Chen; Zuo, Yuanbojiao; Zhou, Yuan; Han, Renzhi; Pediatrics, School of MedicineBiological processes incorporate feedback mechanisms to enable positive and/or negative regulation. cAMP is an important second messenger involved in many aspects of muscle biology. However, the feedback mechanisms for the cAMP signaling control in skeletal muscle are largely unknown. Here we show that blood vessel epicardial substance (BVES) is a negative regulator of adenylyl cyclase 9 (ADCY9)-mediated cAMP signaling involved in maintaining muscle mass and function. BVES deletion in mice reduces muscle mass and impairs muscle performance, whereas virally delivered BVES expressed in Bves-deficient skeletal muscle reverses these defects. BVES interacts with and negatively regulates ADCY9’s activity. Disruption of BVES-mediated control of cAMP signaling leads to an increased protein kinase A (PKA) signaling cascade, thereby promoting FoxO-mediated ubiquitin proteasome degradation and autophagy initiation. Our study reveals that BVES functions as a negative feedback regulator of ADCY9-cAMP signaling in skeletal muscle, playing an important role in maintaining muscle homeostasis.Item Liver-specific in vivo base editing of Angptl3 via AAV delivery efficiently lowers blood lipid levels in mice(BMC, 2023-06-15) Zuo, Yuanbojiao; Zhang, Chen; Zhou, Yuan; Li, Haiwen; Xiao, Weidong; Herzog, Roland W.; Xu, Jie; Zhang, Jifeng; Chen, Y. Eugene; Han, Renzhi; Pediatrics, School of MedicineBackground: Gene editing has emerged as an exciting therapeutic development platform for numerous genetic and nongenetic diseases. Targeting lipid-modulating genes such as angiopoietin-related protein 3 (ANGPTL3) with gene editing offers hope for a permanent solution to lower cardiovascular disease risks associated with hypercholesterolemia. Results: In this study, we developed a hepatocyte-specific base editing therapeutic approach delivered by dual adeno-associated virus (AAV) to enable hepatocyte-specific targeting of Angptl3 to lower blood lipid levels. Systemic AAV9-mediated delivery of AncBE4max, a cytosine base editor (CBE), targeting mouse Angptl3 resulted in the installation of a premature stop codon in Angptl3 with an average efficiency of 63.3 ± 2.3% in the bulk liver tissue. A near-complete knockout of the ANGPTL3 protein in the circulation were observed within 2-4 weeks following AAV administration. Furthermore, the serum levels of triglyceride (TG) and total cholesterol (TC) were decreased by approximately 58% and 61%, respectively, at 4 weeks after treatment. Conclusions: These results highlight the promise of liver-targeted Angptl3 base editing for blood lipid control.