ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zuckerman, Scott L."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Collegiate Athletes With Diabetes: Baseline Medical Comorbidities and Preseason Concussion Testing Performance
    (Allen Press, 2024) Anderson, Melissa N.; Gallo, Caitlin A.; Passalugo, Scott W.; Nimeh, Jake M.; Edgar, Richard; Yengo-Kahn, Aaron M.; Neitz, Kristen; Terry, Douglas P.; Zuckerman, Scott L.; Broglio, Steven P.; McCrea, Michael; McAllister, Thomas; Pasquina, Paul; Buckley, Thomas A.; CARE Consortium Investigators; Psychiatry, School of Medicine
    Context: People with diabetes mellitus (DM) are at increased risk for adverse health events and complications throughout their lifetime. Whether DM significantly affects collegiate athletes' concussion baseline testing performance remains unclear. Objectives: To (1) describe the prevalence of DM and associated comorbidities and (2) compare concussion baseline testing performance between student-athletes with DM and student-athletes without DM (NoDM). Design: Retrospective, cross-sectional study. Setting: University. Patients or other participants: Using the Concussion, Assessment, Research and Education (CARE) Consortium research database, we matched athletes with self-reported DM (N = 229) by institution, sex, age, sport, position, testing year, and concussion history to athletes with NoDM (N = 229; total sample mean age = 19.6 ± 1.4 years, women = 42%). Main outcome measure(s): Descriptive statistics and χ2 tests of independence with subsequent odds ratios were calculated. Independent-samples t tests compared baseline symptoms, neurocognitive testing, and balance performance between athletes with DM and athletes with NoDM. Effect sizes were determined for significant group differences. Results: At baseline, athletes with DM had higher rates of self-reported pre-existing balance disorders, sleep disorders, seizure disorders, motion sickness, learning disorders, vision and hearing problems, psychiatric disorders, depression, bipolar disorder, nonmigraine headaches, and meningitis than athletes with NoDM (P values < .05). We found balance differences between groups (P = .032, Cohen d = 0.17) such that, on average, athletes with DM had 1 additional error on the Balance Error Scoring System (DM = 13.4 ± 6.5; NoDM = 12.1 ± 5.9). No other comparisons yielded significant results. Conclusions: Although athletes with DM had high rates of self-reported balance disorders, sleep disorders, seizures, and meningitis, their baseline neurocognitive testing results were largely identical to those of athletes with NoDM. Our findings suggested that nonclinically meaningful differences were present in concussion baseline balance testing but no significant differences were noted in cognitive testing; however, the effect of DM on concussion recovery remains unknown.
  • Loading...
    Thumbnail Image
    Item
    Mechanisms of Injury Leading to Concussions in Collegiate Soccer Players: A CARE Consortium Study
    (Sage, 2024) Jo, Jacob; Boltz, Adrian J.; Williams, Kristen L.; Pasquina, Paul F.; McAllister, Thomas W.; McCrea, Michael A.; Broglio, Steven P.; Zuckerman, Scott L.; Terry, Douglas P.; CARE Consortium Investigators; Arbogast, Kristy; Benjamin, Holly J.; Brooks, Alison; Cameron, Kenneth L.; Chrisman, Sara P. D.; Clugston, James R.; Collins, Micky; DiFiori, John; Eckner, James T.; Estevez, Carlos; Feigenbaum, Luis A.; Goldman, Joshua T.; Hoy, April; Kaminski, Thomas W.; Kelly, Louise A.; Kontos, Anthony P.; Langford, Dianne; Lintner, Laura J.; Master, Christina L.; McDevitt, Jane; McGinty, Gerald; Miles, Chris; Ortega, Justus; Port, Nicholas; Rowson, Steve; Schmidt, Julianne; Susmarski, Adam; Svoboda, Steven; Psychiatry, School of Medicine
    Background: Few previous studies have investigated how different injury mechanisms leading to sport-related concussion (SRC) in soccer may affect outcomes. Purpose: To describe injury mechanisms and evaluate injury mechanisms as predictors of symptom severity, return to play (RTP) initiation, and unrestricted RTP (URTP) in a cohort of collegiate soccer players. Study design: Cohort study; Level of evidence, 2. Methods: The Concussion Assessment, Research and Education (CARE) Consortium database was used. The mechanism of injury was categorized into head-to-ball, head-to-head, head-to-body, and head-to-ground/equipment. Baseline/acute injury characteristics-including Sports Concussion Assessment Tool-3 total symptom severity (TSS), loss of consciousness (LOC), and altered mental status (AMS); descriptive data; and recovery (RTP and URTP)-were compared. Multivariable regression and Weibull models were used to assess the predictive value of the mechanism of injury on TSS and RTP/URTP, respectively. Results: Among 391 soccer SRCs, 32.7% were attributed to a head-to-ball mechanism, 27.9% to a head-to-body mechanism, 21.7% to a head-to-head mechanism, and 17.6% to a head-to-ground/equipment mechanism. Event type was significantly associated with injury mechanism [χ2(3) = 63; P < .001), such that more head-to-ball concussions occurred in practice sessions (n = 92 [51.1%] vs n = 36 [17.1%]) and more head-to-head (n = 65 [30.8%] vs n = 20 [11.1]) and head-to-body (n = 76 [36%] vs n = 33 [18.3%]) concussions occurred in competition. The primary position was significantly associated with injury mechanism [χ2(3) = 24; P < .004], with goalkeepers having no SRCs from the head-to-head mechanism (n = 0 [0%]) and forward players having the least head-to-body mechanism (n = 15 [19.2%]). LOC was also associated with injury mechanism (P = .034), with LOC being most prevalent in head-to-ground/equipment. Finally, AMS was most prevalent in head-to-ball (n = 54 [34.2%]) and head-to-body (n = 48 [30.4%]) mechanisms [χ2(3) = 9; P = .029]. In our multivariable models, the mechanism was not a predictor of TSS or RTP; however, it was associated with URTP (P = .044), with head-to-equipment/ground injuries resulting in the shortest mean number of days (14 ± 9.1 days) to URTP and the head-to-ball mechanism the longest (18.6 ± 21.6 days). Conclusion: The mechanism of injury differed by event type and primary position, and LOC and AMS were different across mechanisms. Even though the mechanism of injury was not a significant predictor of acute symptom burden or time until RTP initiation, those with head-to-equipment/ground injuries spent the shortest time until URTP, and those with head-to-ball injuries had the longest time until URTP.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University