- Browse by Author
Browsing by Author "Zou, Jiadao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item eyeSay: Brain Visual Dynamics Decoding With Deep Learning & Edge Computing(IEEE, 2022-07-25) Zou, Jiadao; Zhang, Qingxue; Biomedical Engineering and Informatics, Luddy School of Informatics, Computing, and EngineeringBrain visual dynamics encode rich functional and biological patterns of the neural system, and if decoded, are of great promise for many applications such as intention understanding, cognitive load quantization and neural disorder measurement. We here focus on the understanding of the brain visual dynamics for the Amyotrophic lateral sclerosis (ALS) population, and propose a novel system that allows these so- called ‘lock-in’ patients to ‘speak’ with their brain visual movements. More specifically, we propose an intelligent system to decode the eye bio-potential signal, Electrooculogram (EOG), thereby understanding the patients’ intention. We first propose to leverage a deep learning framework for automatic feature learning and classification of the brain visual dynamics, aiming to translate the EOG to meaningful words. We afterwards design and develop an edge computing platform on the smart phone, which can execute the deep learning algorithm, visualize the brain visual dynamics, and demonstrate the edge inference results, all in real-time. Evaluated on 4,500 trials of brain visual movements performed by multiple users, our novel system has demonstrated a high eye-word recognition rate up to 90.47%. The system is demonstrated to be intelligent, effective and convenient for decoding brain visual dynamics for ALS patients. This research thus is expected to greatly advance the decoding and understanding of brain visual dynamics, by leveraging machine learning and edge computing innovations.Item Wearable Big Data Harnessing with Deep Learning, Edge Computing and Efficiency Optimization(2023-12) Zou, Jiadao; Zhang, Qingxue; King, Brian; Christopher, Lauren; Chien, StanleyIn this dissertation, efforts and innovations are made to advance subtle pattern mining, edge computing, and system efficiency optimization for biomedical applications, thereby advancing precision medicine big data. Brain visual dynamics encode rich functional and biological patterns of the neural system, promising for applications like intention decoding, cognitive load quantization and neural disorder measurement. We here focus on the understanding of the brain visual dynamics for the Amyotrophic lateral sclerosis (ALS) population. We leverage a deep learning framework for automatic feature learning and classification, which can translate the eye Electrooculography (EOG) signal to meaningful words. We then build an edge computing platform on the smart phone, for learning, visualization, and decoded word demonstration, all in real-time. In a further study, we have leveraged deep transfer learning to boost EOG decoding effectiveness. More specifically, the model trained on basic eye movements is leveraged and treated as an additional feature extractor when classifying the signal to the meaningful word, resulting in higher accuracy. Efforts are further made to decoding functional Near-Infrared Spectroscopy (fNIRS) signal, which encodes rich brain dynamics like the cognitive load. We have proposed a novel Multi-view Multi-channel Graph Neural Network (mmGNN). More specifically, we propose to mine the multi-channel fNIRS dynamics with a multi-stage GNN that can effectively extract the channel- specific patterns, propagate patterns among channels, and fuse patterns for high-level abstraction. Further, we boost the learning capability with multi-view learning to mine pertinent patterns in temporal, spectral, time-frequency, and statistical domains. Massive-device systems, like wearable massive-sensor computers and Internet of Things (IoTs), are promising in the era of big data. The crucial challenge is about how to maximize the efficiency under coupling constraints like energy budget, computing, and communication. We propose a deep reinforcement learning framework, with a pattern booster and a learning adaptor. This framework has demonstrated optimally maximizes the energy utilization and computing efficiency on the local massive devices under a one-center fifteen-device circumstance. Our research and findings are expected to greatly advance the intelligent, real-time, and efficient big data harnessing, leveraging deep learning, edge computing, and efficiency optimization.