- Browse by Author
Browsing by Author "Zirkle, Joel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Modeling Temporal Patterns of Neural Synchronization: Synaptic Plasticity and Stochastic Mechanisms(2020-08) Zirkle, Joel; Rubchinsky, Leonid; Kuznetsov, Alexey; Arciero, Julia; Barber, JaredNeural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations, even if the average synchrony level is the same. In this thesis, we use computational neuroscience methods to investigate the effects of (i) spike-timing dependent plasticity (STDP) and (ii) noise on the temporal patterns of synchronization in a simple model. The model is composed of two conductance-based neurons connected via excitatory unidirectional synapses. In (i) these excitatory synapses are made plastic, in (ii) two different types of noise implementation to model the stochasticity of membrane ion channels is considered. The plasticity results are taken from our recently published article, while the noise results are currently being compiled into a manuscript. The dynamics of this network is subjected to the time-series analysis methods used in prior experimental studies. We provide numerical evidence that both STDP and channel noise can alter the synchronized dynamics in the network in several ways. This depends on the time scale that plasticity acts on and the intensity of the noise. However, in general, the action of STDP and noise in the simple network considered here is to promote dynamics with short desynchronizations (i.e. dynamics reminiscent of that observed in experimental studies) over dynamics with longer desynchronizations.Item Noise Effect on the Temporal Patterns of Neural Synchrony(Elsevier, 2021-09) Zirkle, Joel; Rubchinsky, Leonid L.; Mathematical Sciences, School of ScienceNeural synchrony in the brain is often present in an intermittent fashion, i.e., there are intervals of synchronized activity interspersed with intervals of desynchronized activity. A series of experimental studies showed that this kind of temporal patterning of neural synchronization may be very specific and may be correlated with behaviour (even if the average synchrony strength is not changed). Prior studies showed that a network with many short desynchronized intervals may be functionally different from a network with few long desynchronized intervals as it may be more sensitive to synchronizing input signals. In this study, we investigated the effect of channel noise on the temporal patterns of neural synchronization. We employed a small network of conductance-based model neurons that were mutually connected via excitatory synapses. The resulting dynamics of the network was studied using the same time-series analysis methods as used in prior experimental and computational studies. While it is well known that synchrony strength generally degrades with noise, we found that noise also affects the temporal patterning of synchrony. Noise, at a sufficient intensity (yet too weak to substantially affect synchrony strength), promotes dynamics with predominantly short (although potentially very numerous) desynchronizations. Thus, channel noise may be one of the mechanisms contributing to the short desynchronization dynamics observed in multiple experimental studies.Item Spike-Timing Dependent Plasticity Effect on the Temporal Patterning of Neural Synchronization(Frontiers, 2020-06-12) Zirkle, Joel; Rubchinsky, Leonid L.; Mathematical Sciences, School of ScienceNeural synchrony in the brain at rest is usually variable and intermittent, thus intervals of predominantly synchronized activity are interrupted by intervals of desynchronized activity. Prior studies suggested that this temporal structure of the weakly synchronous activity might be functionally significant: many short desynchronizations may be functionally different from few long desynchronizations even if the average synchrony level is the same. In this study, we used computational neuroscience methods to investigate the effects of spike-timing dependent plasticity (STDP) on the temporal patterns of synchronization in a simple model. We employed a small network of conductance-based model neurons that were connected via excitatory plastic synapses. The dynamics of this network was subjected to the time-series analysis methods used in prior experimental studies. We found that STDP could alter the synchronized dynamics in the network in several ways, depending on the time scale that plasticity acts on. However, in general, the action of STDP in the simple network considered here is to promote dynamics with short desynchronizations (i.e., dynamics reminiscent of that observed in experimental studies). Complex interplay of the cellular and synaptic dynamics may lead to the activity-dependent adjustment of synaptic strength in such a way as to facilitate experimentally observed short desynchronizations in the intermittently synchronized neural activity.