- Browse by Author
Browsing by Author "Zhu, Caiying"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Loss of Asxl1 Alters Self-Renewal and Cell Fate of Bone Marrow Stromal Cell, Leading to Bohring-Opitz-like Syndrome in Mice(Elsevier, 2016-06-14) Zhang, Peng; Xing, Caihong; Rhodes, Steven D.; He, Yongzheng; Deng, Kai; Li, Zhaomin; He, Fuhong; Zhu, Caiying; Nguyen, Lihn; Zhou, Yuan; Chen, Shi; Mohammad, Khalid S.; Guise, Theresa A.; Abdel-Wahab, Omar; Xu, Mingjiang; Wang, Qian-Fei; Yang, Feng-Chun; Department of Pediatrics, IU School of MedicineDe novo ASXL1 mutations are found in patients with Bohring-Opitz syndrome, a disease with severe developmental defects and early childhood mortality. The underlying pathologic mechanisms remain largely unknown. Using Asxl1-targeted murine models, we found that Asxl1 global loss as well as conditional deletion in osteoblasts and their progenitors led to significant bone loss and a markedly decreased number of bone marrow stromal cells (BMSCs) compared with wild-type littermates. Asxl1(-/-) BMSCs displayed impaired self-renewal and skewed differentiation, away from osteoblasts and favoring adipocytes. RNA-sequencing analysis revealed altered expression of genes involved in cell proliferation, skeletal development, and morphogenesis. Furthermore, gene set enrichment analysis showed decreased expression of stem cell self-renewal gene signature, suggesting a role of Asxl1 in regulating the stemness of BMSCs. Importantly, re-introduction of Asxl1 normalized NANOG and OCT4 expression and restored the self-renewal capacity of Asxl1(-/-) BMSCs. Our study unveils a pivotal role of ASXL1 in the maintenance of BMSC functions and skeletal development.