- Browse by Author
Browsing by Author "Zhou, Xinyu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Obesity-induced inflammation exacerbates clonal hematopoiesis(The American Society for Clinical Investigation, 2023-06-01) Pasupuleti, Santhosh Kumar; Ramdas, Baskar; Burns, Sarah S.; Palam, Lakshmi Reddy; Kanumuri, Rahul; Kumar, Ramesh; Pandhiri, Taruni Reddy; Dave, Utpal P.; Yellapu, Nanda Kumar; Zhou, Xinyu; Zhang, Chi; Sandusky, George E.; Yu, Zhi; Honigberg, Michael C.; Bick, Alexander G.; Griffin, Gabriel K.; Niroula, Abhishek; Ebert, Benjamin L.; Paczesny, Sophie; Natarajan, Pradeep; Kapur, Reuben; Medicine, School of MedicineCharacterized by the accumulation of somatic mutations in blood cell lineages, clonal hematopoiesis of indeterminate potential (CHIP) is frequent in aging and involves the expansion of mutated hematopoietic stem and progenitor cells (HSC/Ps) that leads to an increased risk of hematologic malignancy. However, the risk factors that contribute to CHIP-associated clonal hematopoiesis (CH) are poorly understood. Obesity induces a proinflammatory state and fatty bone marrow (FBM), which may influence CHIP-associated pathologies. We analyzed exome sequencing and clinical data for 47,466 individuals with validated CHIP in the UK Biobank. CHIP was present in 5.8% of the study population and was associated with a significant increase in the waist-to-hip ratio (WHR). Mouse models of obesity and CHIP driven by heterozygosity of Tet2, Dnmt3a, Asxl1, and Jak2 resulted in exacerbated expansion of mutant HSC/Ps due in part to excessive inflammation. Our results show that obesity is highly associated with CHIP and that a proinflammatory state could potentiate the progression of CHIP to more significant hematologic neoplasia. The calcium channel blockers nifedipine and SKF-96365, either alone or in combination with metformin, MCC950, or anakinra (IL-1 receptor antagonist), suppressed the growth of mutant CHIP cells and partially restored normal hematopoiesis. Targeting CHIP-mutant cells with these drugs could be a potential therapeutic approach to treat CH and its associated abnormalities in individuals with obesity.Item Pipeline for characterizing alternative mechanisms (PCAM) based on bi-clustering to study colorectal cancer heterogeneity(Elsevier, 2023-03-17) Cao, Sha; Chang, Wennan; Wan, Changlin; Lu, Xiaoyu; Dang, Pengtao; Zhou, Xinyu; Zhu, Haiqi; Chen, Jian; Li, Bo; Zang, Yong; Wang, Yijie; Zhang, Chi; Biostatistics and Health Data Science, School of MedicineThe cells of colorectal cancer (CRC) in their microenvironment experience constant stress, leading to dysregulated activity in the tumor niche. As a result, cancer cells acquire alternative pathways in response to the changing microenvironment, posing significant challenges for the design of effective cancer treatment strategies. While computational studies on high-throughput omics data have advanced our understanding of CRC subtypes, characterizing the heterogeneity of this disease remains remarkably complex. Here, we present a novel computational Pipeline for Characterizing Alternative Mechanisms (PCAM) based on biclustering to gain a more detailed understanding of cancer heterogeneity. Our application of PCAM to large-scale CRC transcriptomics datasets suggests that PCAM can generate a wealth of information leading to new biological understanding and predictive markers of alternative mechanisms. Our key findings include: 1) A comprehensive collection of alternative pathways in CRC, associated with biological and clinical factors. 2) Full annotation of detected alternative mechanisms, including their enrichment in known pathways and associations with various clinical outcomes. 3) A mechanistic relationship between known clinical subtypes and outcomes on a consensus map, visualized by the presence of alternative mechanisms. 4) Several potential novel alternative drug resistance mechanisms for Oxaliplatin, 5-Fluorouracil, and FOLFOX, some of which were validated on independent datasets. We believe that gaining a deeper understanding of alternative mechanisms is a critical step towards characterizing the heterogeneity of CRC. The hypotheses generated by PCAM, along with the comprehensive collection of biologically and clinically associated alternative pathways in CRC, could provide valuable insights into the underlying mechanisms driving cancer progression and drug resistance, which could aid in the development of more effective cancer therapies and guide experimental design towards more targeted and personalized treatment strategies. The computational pipeline of PCAM is available in GitHub (https://github.com/changwn/BC-CRC).