- Browse by Author
Browsing by Author "Zhou, Jie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Electroacupuncture Regulates Pain Transition Through Inhibiting PKCε and TRPV1 Expression in Dorsal Root Ganglion(Frontiers Media, 2021-07-20) Fang, Junfan; Wang, Sisi; Zhou, Jie; Shao, Xiaomei; Sun, Haiju; Liang, Yi; He, Xiaofen; Jiang, Yongliang; Liu, Boyi; Jin, Xiaoming; Fang, Jianqiao; Du, Junying; Anatomy and Cell Biology, School of MedicineMany cases of acute pain can be resolved with few side effects. However, some cases of acute pain may persist beyond the time required for tissue injury recovery and transit to chronic pain, which is hard to treat. The mechanisms underlying pain transition are not entirely understood, and treatment strategies are lacking. In this study, the hyperalgesic priming model was established on rats to study pain transition by injection of carrageenan (Car) and prostaglandin E2 (PGE2). The expression levels of protein kinase C epsilon (PKCε) and transient receptor potential vanilloid 1 (TRPV1) in the L4-L6 dorsal root ganglion (DRG) were investigated. Electroacupuncture (EA) is a form of acupuncture in which a small electric current is passed between a pair of acupuncture needles. EA was administrated, and its effect on hyperalgesia and PKCε and TRPV1 expression was investigated. The PKCε-TRPV1 signaling pathway in DRG was implicated in the pain transition. EA increased the pain threshold of model animals and regulated the high expression of PKCε and TRPV1. Moreover, EA also regulated hyperalgesia and high TRPV1 expression induced by selective PKCε activation. We also found that EA partly increased chronic pain threshold, even though it was only administered between the Car and PGE2 injections. These findings suggested that EA could prevent the transition from acute to chronic pain by inhibiting the PKCε and TRPV1 expression in the peripheral nervous system.Item NOVEL NANOSTRUCTURED HIGH-PERFORMANCE ANION EXCHANGE IONOMERS FOR ANION EXCHANGE MEMBRANE FUEL CELLS(Office of the Vice Chancellor for Research, 2012-04-13) Sun, Lu; Guo, Junsong; Zhou, Jie; Xu, Qingming; Chu, Deryn; Chen, RongrongA novel block copolymer, styrene-ethylene/butylene-styrene (SEBS), was chosen as the starting material to prepare pendant quaternary ammonium-based ionomers with an ion-exchange-capacity (IEC) of 0.66, 1.30, and 1.54 meq g-1, denoted by QSEBS-L, QSEBS-M, and QSEBS-H, respectively. These QSEBS ionomers were demonstrated to have excellent dimensional stability against hydration without significantly sacrificing the ionic conductivity as compared to the widely studied polysulfone (PSf) based ionomers. The water uptake of the QSEBS-based ionomers depended on their functionality; a higher IEC in the ionomer resulted in more water uptake and a higher ionic conductivity. The MEAs fabricated with the QSEBS-M and QSEBS-H ionomers showed the best H2/O2 fuel cell performance with peak power densities reaching 210 mW cm-2 at 50 °C, which was significantly higher than that of the PSf-based ionomers (~30 mW cm-2). Electrochemical impedance spec-troscopy (EIS) analysis indicated that the superior fuel cell performance ob-served with the QSEBS-based ionomers can be attributed to: (1) the low in-ternal cell resistance due to good comparability of the QSEBS-based ionomers with the membranes and (2) the low mass transport and charge transport in both the anode and the cathode due to the excellent dimension-al stability and balanced conductivity-hydrophobicity originated by the unique morphology of the QSEBS-based ionomers. AFM phase imaging measurements of the QSEBS-based ionomers revealed unique nanostruc-tures containing isolated hydrophobic and continuous anion conducting hy-drophilic domains. By further optimizing the chemistry and morphology of the ionomers and the membranes, the resistance of the anode and cathode of the AEMFCs will be further reduced.