- Browse by Author
Browsing by Author "Zhou, Feng"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Dissection of transcriptome dysregulation and immune characterization in women with germline BRCA1 mutation at single-cell resolution(Springer, 2022-09-09) Yu, Xuexin; Lin, Wanrun; Spirtos, Alexandra; Wang, Yan; Chen, Hao; Ye, Jianfeng; Parker, Jessica; Liu, Ci Ci; Wang, Yiying; Quinn, Gabriella; Zhou, Feng; Chambers, Setsuko K.; Lewis, Cheryl; Lea, Jayanthi; Li, Bo; Zheng, Wenxin; Obstetrics and Gynecology, School of MedicineBackground: High-grade serous carcinoma (HGSC) is the most frequent and lethal type of ovarian cancer. It has been proposed that tubal secretory cells are the origin of ovarian HGSC in women with familial BRCA1/2 mutations. However, the molecular changes underlying malignant transformation remain unknown. Method: We performed single-cell RNA and T cell receptor sequencing of tubal fimbriated ends from 3 BRCA1 germline mutation carriers (BRCA1 carriers) and 3 normal controls with no high-risk history (non-BRCA1 carriers). Results: Exploring the transcriptomes of 19,008 cells, predominantly from BRCA1+ samples, we identified 5 major cell populations in the fallopian tubal mucosae. The secretory cells of BRCA1+ samples had differentially expressed genes involved in tumor growth and regulation, chemokine signaling, and antigen presentation compared to the wild-type BRCA1 controls. There are several novel findings in this study. First, a subset of the fallopian tubal secretory cells from one BRCA1 carrier exhibited an epithelial-to-mesenchymal transition (EMT) phenotype, which was also present in the mucosal fibroblasts. Second, we identified a previously unreported phenotypic split of the EMT secretory cells with distinct evolutionary endpoints. Third, we observed increased clonal expansion among the CD8+ T cell population from BRCA1+ carriers. Among those clonally expanded CD8+ T cells, PD-1 was significantly increased in tubal mucosae of BRCA1+ patients compared with that of normal controls, indicating that T cell exhaustion may occur before the development of any premalignant or malignant lesions. Conclusion: These results indicate that EMT and immune evasion in normal-looking tubal mucosae may represent early events leading to the development of HGSC in women with BRCA1 germline mutation. Our findings provide a probable molecular mechanism explaining why some, but not all, women with BRCA1 germline mutation present with early development and rapid dissemination of HGSC.Item EVALUATION OF GENE REGULATION AND THERAPEUTIC DRUGS RELATED TO ALZHEIMER’S DISEASE IN DEGENERATING PRIMARY CEREBROCORTICAL CULTURES(2012-03-16) Bailey, Jason A.; Lahiri, Debomoy K.; Du, Yansheng; McBride, William J., 1956-; Zhou, FengAlzheimer’s disease (AD) is a neurological disorder defined by the presence of plaques comprised mostly of amyloid-β (Aβ), and neurofibrillary tangles consisting of hyperphosphorylated microtubule associated protein tau (MAPT). AD is also characterized by widespread synapse loss and degeneration followed by death of neurons in the brain. Inflammatory processes, such as glial activation, are also implicated. In order to study mechanisms of neurodegeneration and evaluate potential therapeutic agents that could slow or reverse this process, a tissue culture system was developed based on primary embryonic cerebrocortical neurons. This culture system was observed to exhibit time-dependent neurodegeneration, glial proliferation, and synaptic marker loss consistent with AD-affected brains. The regulatory promoter regions of several genes implicated in AD, including the Aβ precursor protein (APP), β-amyloid cleaving enzyme (BACE1), and MAPT, were studied in this culture model. The MAPT gene promoter activity followed the pattern of neuronal maturation and degeneration quite closely, increasing in the initial phase of the tissue culture, then reducing markedly during neurodegeneration while APP and BACE1 gene promoters remained active. Deletion series of these promoters were tested to give an initial indication of the active regions of the gene promoter regions. Furthermore, the effects of exogenous Aβ and overexpression of p25, which are two possible pathogenic mechanisms of gene regulation in AD, were studied. Response to Aβ varied between the promoters and by length of the Aβ fragment used. Overexpression of p25 increased MAPT, but not APP or BACE1, promoter activity. This neurodegeneration model was also used to study the putative neuroprotective action of the NMDA receptor antagonist memantine. Treatment with memantine prevented loss of synaptic markers and preserved neuronal morphology, while having no apparent effect on glial activation. The protective action on synaptic markers was also observed with two other structurally distinct NMDA receptor antagonists, suggesting that the effects of memantine are produced by its action on the NMDA receptor. It is concluded that this tissue culture model will be useful for the study of gene regulation and therapeutic agents for neurodegeneration, and that the efficacy of memantine may result from preservation of synaptic connections in the brain.Item The microrna-mediated regulation of proteins implicated in the pathogenesis of Alzheimer's Disease(2016-11-29) Chopra, Nipun; Zhou, Feng; Lahiri, Debomoy K.; Hashino, Eri; Obukhov, AlexanderAlzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the post-mortem deposition of amyloid-beta (Aβ) containing neuritic plaques and tau-loaded tangles. According to the amyloid hypothesis, the generation of Aβ via the cleavage of Aβ precursor protein (APP) by β-APP site-cleaving enzyme 1 (BACE1) is a causative step in the development of AD. Therefore, targeting the production and/or clearance of Aβ peptide (by Aβ-degrading enzymes such as Neprilysin) would help understand the disorder as well as serves as therapeutic potential to treat the disorder. MicroRNA are small, noncoding RNA capable of modulating protein expression by primarily targeting their 3’UTR. Therefore, identifying miRNA which target APP, BACE1 and Neprilysin (NEP) would elucidate the complicated regulatory mechanisms involved in protein turnover and provide novel drug targets. We identified miR-20b as a modulator of APP and soluble Aβ. We also identified the target site for miR-20b’s binding on the APP 3’UTR. Further, miR-20b exerts influence on neuronal morphology, likely due to its APP reduction. We also identified miR-298 as a dual regulator of APP and BACE1 and confirmed miR-298’s targeting of both 3’UTRs. We also showed that miR-298 overexpression reduced levels of both soluble Aβ40 and Aβ42 peptides. Additionally, we identified two SNPs in proximity to the MIR298 gene, which are associated with AD-related biomarkers. Based on these results, we showed miR-298 targets a specific isoform of tau by putatively binding a non-canonical target site on the MAPT 3’UTR. Finally, the insertion of the NEP 3’UTR into a reporter vector increases reporter expression; suggesting regulatory elements targeting the 3’UTR. We subsequently identified miR-216 as reducing NEP 3’UTR-mediated luciferase activity. We also measured levels of NEP protein in various mammalian tissue – such as rodent and human fetal tissue, and subsequently showed measurable Aβ levels in correlation with NEP expression. Therefore, herein, we have identified miRNA involved in the regulation of proteins implicated in the pathogenesis of AD.Item MOLECULAR AND CELLULAR MECHANISMS LEADING TO SIMILAR PHENOTYPES IN DOWN AND FETAL ALCOHOL SYNDROMES(Office of the Vice Chancellor for Research, 2011-04-08) Solzak, Jeffrey P.; Zhou, Feng; Roper, Randall J.Down syndrome (DS) and Fetal Alcohol Syndrome (FAS) are two leading causes of birth defects with phenotypes ranging from cognitive impairment to craniofacial abnormalities. These syndromes have an estimated occurrence of 1/750 and 1/1000 live births, respectively. While DS originates from the trisomy of human chromosome 21 and FAS from excess alcohol consumption, many of the defining characteristics for these two disorders are stunningly similar. Our research of the published literature has identified more than 20 similarities in DS and FAS phenotypes including precise craniofacial and neurological abnormalities. We hypothesize that the similar phenotypes in these two syndromes are caused by disruptions in common molecular and cellular pathways. To test our hypothesis we are examining morphometric, genetic, and cellular phenotypes during development of DS and FAS mouse models. Our preliminary evidence indicates that during early development, expression of Dyrk1a and Rcan1 (two genes found in three copies in individuals with DS) is dysregulated in the craniofacial and neurological precursors of both DS and FAS as compared to normal control embryos. Using immuocytochemistry, we are analyzing cellular properties of neurological development in DS embryos and comparing deficiencies found between trisomic and normal mice to those found in FAS embryos at similar stages. These results will further define molecular and cellular alterations leading to DS and FAS phenotypes and provide mechanisms to target for potential pharmacotherapy.Item The regulatory role and environmental sensitivity of DNA methylation in neurodevelopment(2017-06-01) Resendiz, Marisol; Zhou, FengThe emerging field of epigenetics is expanding our understanding of how biological diversity is generated in the face of genetic limitations. One epigenetic mechanism in particular, DNA methylation, has demonstrated a dynamic range during neural development. Here, we provide evidence that DNA methylation occurs as a cell unique program aiding in the regulation of neurodevelopmental gene expression. DNA methylation has demonstrated sensitivity to external inputs ranging from stress to chemical exposure and dietary factors. To explore DNA methylation as a means of communicating early-life stress to the brain, we utilized a mouse model of fetal alcohol spectrum disorders (FASD). FASD presents a range of neurodevelopmental deficits and is a leading cause of neurodevelopmental disabilities in the United States. Predicated on the knowledge of alcohol's teratogenic role in brain development, we describe that the normal pattern of cortical DNA methylation and epigenetic correlates is similarly impacted by prenatal alcohol exposure. Due to the biochemical interaction of alcohol metabolism and the pathways regulating DNA methylation synthesis, we further investigated whether dietary manipulation could normalize the cortical DNA methylation program and aid in the protection of FASD characteristics. We found that the alcohol sensitive DNA methylation landscape is dually capable of registering dietary intervention, demonstrating normalization of disease-related patterns in the cortex and improved neurodevelopmental gene expression and morphology. Finally, we investigated the DNA methylation landscape in a crucial corticodevelopmental gene to more accurately define the breadth and scope of the environmental impacts at the nucleotide level. We found that alcohol and dietary supplementation are selective for regions associated with transcriptional control. Collectively, the evidence supports that DNA methylation plays a regulatory role in development and that its sensitivity to external inputs is dynamic and detectable at the smallest genomic level. Importantly, DNA methylation landscapes are adaptable and thus bear diagnostic and therapeutic potential.