ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhitomirsky, Benny"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic subtypes of smoldering multiple myeloma are associated with distinct pathogenic phenotypes and clinical outcomes
    (Springer, 2022-06-15) Bustoros, Mark; Anand, Shankara; Sklavenitis-Pistofidis, Romanos; Redd, Robert; Boyle, Eileen M.; Zhitomirsky, Benny; Dunford, Andrew J.; Tai, Yu-Tzu; Chavda, Selina J.; Boehner, Cody; Neuse, Carl Jannes; Rahmat, Mahshid; Dutta, Ankit; Casneuf, Tineke; Verona, Raluca; Kastritis, Efstathis; Trippa, Lorenzo; Stewart, Chip; Walker, Brian A.; Davies, Faith E.; Dimopoulos, Meletios-Athanasios; Bergsagel, P. Leif; Yong, Kwee; Morgan, Gareth J.; Aguet, François; Getz, Gad; Ghobrial, Irene M.; Medicine, School of Medicine
    Smoldering multiple myeloma (SMM) is a precursor condition of multiple myeloma (MM) with significant heterogeneity in disease progression. Existing clinical models of progression risk do not fully capture this heterogeneity. Here we integrate 42 genetic alterations from 214 SMM patients using unsupervised binary matrix factorization (BMF) clustering and identify six distinct genetic subtypes. These subtypes are differentially associated with established MM-related RNA signatures, oncogenic and immune transcriptional profiles, and evolving clinical biomarkers. Three genetic subtypes are associated with increased risk of progression to active MM in both the primary and validation cohorts, indicating they can be used to better predict high and low-risk patients within the currently used clinical risk stratification models.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University