ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zheng, Xiuwen"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    FAVOR: functional annotation of variants online resource and annotator for variation across the human genome
    (Oxford University Press, 2023) Zhou, Hufeng; Arapoglou, Theodore; Li, Xihao; Li, Zilin; Zheng, Xiuwen; Moore, Jill; Asok, Abhijith; Kumar, Sushant; Blue, Elizabeth E.; Buyske, Steven; Cox, Nancy; Felsenfeld, Adam; Gerstein, Mark; Kenny, Eimear; Li, Bingshan; Matise, Tara; Philippakis, Anthony; Rehm, Heidi L.; Sofia, Heidi J.; Snyder, Grace; NHGRI Genome Sequencing Program Variant Functional Annotation Working Group; Weng, Zhiping; Neale, Benjamin; Sunyaev, Shamil R.; Lin, Xihong; Biostatistics, School of Public Health
    Large biobank-scale whole genome sequencing (WGS) studies are rapidly identifying a multitude of coding and non-coding variants. They provide an unprecedented resource for illuminating the genetic basis of human diseases. Variant functional annotations play a critical role in WGS analysis, result interpretation, and prioritization of disease- or trait-associated causal variants. Existing functional annotation databases have limited scope to perform online queries and functionally annotate the genotype data of large biobank-scale WGS studies. We develop the Functional Annotation of Variants Online Resources (FAVOR) to meet these pressing needs. FAVOR provides a comprehensive multi-faceted variant functional annotation online portal that summarizes and visualizes findings of all possible nine billion single nucleotide variants (SNVs) across the genome. It allows for rapid variant-, gene- and region-level queries of variant functional annotations. FAVOR integrates variant functional information from multiple sources to describe the functional characteristics of variants and facilitates prioritizing plausible causal variants influencing human phenotypes. Furthermore, we provide a scalable annotation tool, FAVORannotator, to functionally annotate large-scale WGS studies and efficiently store the genotype and their variant functional annotation data in a single file using the annotated Genomic Data Structure (aGDS) format, making downstream analysis more convenient. FAVOR and FAVORannotator are available at https://favor.genohub.org.
  • Loading...
    Thumbnail Image
    Item
    Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program
    (Elsevier, 2019-09-26) Sarnowski, Chloé; Leong, Aaron; Raffield, Laura M.; Wu, Peitao; de Vries, Paul S.; DiCorpo, Daniel; Guo, Xiuqing; Xu, Huichun; Liu, Yongmei; Zheng, Xiuwen; Hu, Yao; Brody, Jennifer A.; Goodarzi, Mark O.; Hidalgo, Bertha A.; Highland, Heather M.; Jain, Deepti; Liu, Ching-Ti; Naik, Rakhi P.; O’Connell, Jeffrey R.; Perry, James A.; Porneala, Bianca C.; Selvin, Elizabeth; Wessel, Jennifer; Psaty, Bruce M.; Curran, Joanne E.; Peralta, Juan M.; Blangero, John; Kooperberg, Charles; Mathias, Rasika; Johnson, Andrew D.; Reiner, Alexander P.; Mitchell, Braxton D.; Cupples, L. Adrienne; Vasan, Ramachandran S.; Correa, Adolfo; Morrison, Alanna C.; Boerwinkle, Eric; Rotter, Jerome I.; Rich, Stephen S.; Manning, Alisa K.; Dupuis, Josée; Meigs, James B.; TOPMed Diabetes Working Group; TOPMed Hematology Working Group; TOPMed Hemostasis Working Group; National Heart, Lung, and Blood Institute TOPMed Consortium; Epidemiology, School of Public Health
    Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.
  • Loading...
    Thumbnail Image
    Item
    Variant-specific inflation factors for assessing population stratification at the phenotypic variance level
    (Springer Nature, 2021-06-09) Sofer, Tamar; Zheng, Xiuwen; Laurie, Cecelia A.; Gogarten, Stephanie M.; Brody, Jennifer A.; Conomos, Matthew P.; Bis, Joshua C.; Thornton, Timothy A.; Szpiro, Adam; O’Connell, Jeffrey R.; Lange, Ethan M.; Gao, Yan; Cupples, L. Adrienne; Psaty, Bruce M.; NHLBI Trans- Omics for Precision Medicine (TOPMed) Consortium; Rice, Kenneth M.; Medicine, School of Medicine
    In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University