ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhen, Gehua"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Excess TGF-β mediates muscle weakness associated with bone metastases in mice
    (SpringerNature, 2015-11) Waning, David L.; Mohammad, Khalid S.; Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.; Department of Medicine, IU School of Medicine
    Cancer-associated muscle weakness is a poorly understood phenomenon, and there is no effective treatment. Here we find that seven different mouse models of human osteolytic bone metastases-representing breast, lung and prostate cancers, as well as multiple myeloma-exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that transforming growth factor (TGF)-β, released from the bone surface as a result of metastasis-induced bone destruction, upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor and calcium (Ca(2+)) release channel (RyR1). The oxidized RyR1 channels leaked Ca(2+), resulting in lower intracellular signaling, which is required for proper muscle contraction. We found that inhibiting RyR1 leakage, TGF-β signaling, TGF-β release from bone or Nox4 activity improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, increased Nox4 binding to RyR1 and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a nonmalignant metabolic bone disorder associated with increased TGF-β activity. Thus, pathological TGF-β release from bone contributes to muscle weakness by decreasing Ca(2+)-induced muscle force production.
  • Loading...
    Thumbnail Image
    Item
    Mechanically induced Ca2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation
    (Nature Publishing group, 2018-03-19) Morrell, Andrea E.; Brown, Genevieve N.; Robinson, Samuel T.; Sattler, Rachel L.; Baik, Andrew D.; Zhen, Gehua; Cao, Xu; Bonewald, Lynda F.; Jin, Weiyang; Kam, Lance C.; Guo, X. Edward; Medicine, School of Medicine
    The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin (OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We’ve previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca2+) dynamics. Here, by simultaneously monitoring Ca2+ and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca2+ transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles (EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1 (LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca2+ signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle. Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca2+-dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca2+ signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca2+-mediated signaling in bone adaptation., People gain bone in response to exercise and lose it during prolonged bedrest; now we’re closer to understanding how this happens., Bone cells called osteocytes act as mechanical sensors, responding to changes in force by regulating the activity of bone-forming osteoblasts and bone- resorbing osteoclasts. X. Edward Guo at Columbia University in New York and colleagues had previously shown that osteocytes exhibit oscillations in intracellular calcium in response to mechanical stimulation, but the downstream effects of this had been unclear. Using multiple approaches, they have now shown that the cytoskeleton contracts in response to these oscillations, in turn triggering the production and release of extracellular vesicles containing bone-regulatory proteins., When calcium signaling was blocked, vesicle production and release was blunted, and mice failed to show the normal increase in bone formation in response to mechanical loading.
  • Loading...
    Thumbnail Image
    Item
    Role of TGF-β in a Mouse Model of High Turnover Renal Osteodystrophy
    (Oxford University Press, 2014) Liu, Shiguang; Song, Wenping; Boulanger, Joseph H.; Tang, Wen; Sabbagh, Yves; Kelley, Brian; Gotschall, Russell; Ryan, Susan; Phillips, Lucy; Malley, Katie; Cao, Xiaohong; Xia, Tai-He; Zhen, Gehua; Cao, Xu; Ling, Hong; Dechow, Paul C.; Bellido, Teresita M.; Ledbetter, Steven R.; Schiavi, Susan C.; Medicine, School of Medicine
    Altered bone turnover is a key pathologic feature of chronic kidney disease-mineral and bone disorder (CKD-MBD). Expression of TGF-β1, a known regulator of bone turnover, is increased in bone biopsies from individuals with CKD. Similarly, TGF-β1 mRNA and downstream signaling is increased in bones from jck mice, a model of high-turnover renal osteodystrophy. A neutralizing anti-TGF-β antibody (1D11) was used to explore TGF-β's role in renal osteodystrophy. 1D11 administration to jck significantly attenuated elevated serum osteocalcin and type I collagen C-telopeptides. Histomorphometric analysis indicated that 1D11 administration increased bone volume and suppressed the elevated bone turnover in a dose-dependent manner. These effects were associated with reductions in osteoblast and osteoclast surface areas. Micro-computed tomography (µCT) confirmed the observed increase in trabecular bone volume and demonstrated improvements in trabecular architecture and increased cortical thickness. 1D11 administration was associated with significant reductions in expression of osteoblast marker genes (Runx2, alkaline phosphatase, osteocalcin) and the osteoclast marker gene, Trap5. Importantly, in this model, 1D11 did not improve kidney function or reduce serum parathyroid hormone (PTH) levels, indicating that 1D11 effects on bone are independent of changes in renal or parathyroid function. 1D11 also significantly attenuated high-turnover bone disease in the adenine-induced uremic rat model. Antibody administration was associated with a reduction in pSMAD2/SMAD2 in bone but not bone marrow as assessed by quantitative immunoblot analysis. Immunostaining revealed pSMAD staining in osteoblasts and osteocytes but not osteoclasts, suggesting 1D11 effects on osteoclasts may be indirect. Immunoblot and whole genome mRNA expression analysis confirmed our previous observation that repression of Wnt/β-catenin expression in bone is correlated with increased osteoclast activity in jck mice and bone biopsies from CKD patients. Furthermore, our data suggest that elevated TGF-β may contribute to the pathogenesis of high-turnover disease partially through inhibition of β-catenin signaling.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University