- Browse by Author
Browsing by Author "Zhao, Yize"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Identifying highly heritable brain amyloid phenotypes through mining Alzheimer's imaging and sequencing biobank data(World Scientific, 2022) Bao, Jingxuan; Wen, Zixuan; Kim, Mansu; Zhao, Xiwen; Lee, Brian N.; Jung, Sang-Hyuk; Davatzikos, Christos; Saykin, Andrew J.; Thompson, Paul M.; Kim, Dokyoon; Zhao, Yize; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics, an emerging and rapidly growing research field, studies the relationship between genetic variations and brain imaging quantitative traits (QTs) to gain new insights into the phenotypic characteristics and genetic mechanisms of the brain. Heritability is an important measurement to quantify the proportion of the observed variance in an imaging QT that is explained by genetic factors, and can often be used to prioritize brain QTs for subsequent imaging genetic association studies. Most existing studies define regional imaging QTs using predefined brain parcellation schemes such as the automated anatomical labeling (AAL) atlas. However, the power to dissect genetic underpinnings under QTs defined in such an unsupervised fashion could be negatively affected by heterogeneity within the regions in the partition. To bridge this gap, we propose a novel method to define highly heritable brain regions. Based on voxelwise heritability estimates, we extract brain regions containing spatially connected voxels with high heritability. We perform an empirical study on the amyloid imaging and whole genome sequencing data from a landmark Alzheimer’s disease biobank; and demonstrate the regions defined by our method have much higher estimated heritabilities than the regions defined by the AAL atlas. Our proposed method refines the imaging endophenotype constructions in light of their genetic dissection, and yields more powerful imaging QTs for subsequent detection of genetic risk factors along with better interpretability.Item Identifying imaging genetic associations via regional morphometricity estimation(World Scientific, 2022) Bao, Jingxuan; Wen, Zixuan; Kim, Mansu; Saykin, Andrew J.; Thompson, Paul M.; Zhao, Yize; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBrain imaging genetics is an emerging research field aiming to reveal the genetic basis of brain traits captured by imaging data. Inspired by heritability analysis, the concept of morphometricity was recently introduced to assess trait association with whole brain morphology. In this study, we extend the concept of morphometricity from its original definition at the whole brain level to a more focal level based on a region of interest (ROI). We propose a novel framework to identify the SNP-ROI association via regional morphometricity estimation of each studied single nucleotide polymorphism (SNP). We perform an empirical study on the structural MRI and genotyping data from a landmark Alzheimer’s disease (AD) biobank; and yield promising results. Our findings indicate that the AD-related SNPs have higher overall regional morphometricity estimates than the SNPs not yet related to AD. This observation suggests that the variance of AD SNPs can be explained more by regional morphometric features than non-AD SNPs, supporting the value of imaging traits as targets in studying AD genetics. Also, we identified 11 ROIs, where the AD/non-AD SNPs and significant/insignificant morphometricity estimation of the corresponding SNPs in these ROIs show strong dependency. Supplementary motor area (SMA) and dorsolateral prefrontal cortex (DPC) are enriched by these ROIs. Our results also demonstrate that using all the detailed voxel-level measures within the ROI to incorporate morphometric information outperforms using only a single average ROI measure, and thus provides improved power to detect imaging genetic associations.Item Polygenic mediation analysis of Alzheimer's disease implicated intermediate amyloid imaging phenotypes(American Medical Informatics Association, 2021-01-25) Eng, Yingxuan; Yao, Xiaohui; Liu, Kefei; Risacher, Shannon L.; Saykin, Andrew J.; Long, Qi; Zhao, Yize; Shen, Li; Radiology and Imaging Sciences, School of MedicineMediation models have been employed in the study of brain disorders to detect the underlying mechanisms between genetic variants and diagnostic outcomes implicitly mediated by intermediate imaging biomarkers. However, the statistical power is influenced by the modest effects of individual genetic variants on both diagnostic and imaging phenotypes and the limited sample sizes ofimaging genetic cohorts. In this study, we propose a polygenic mediation analysis that comprises a polygenic risk score (PRS) to aggregate genetic effects ofa set ofcandidate variants and then explore the implicit effect ofimaging phenotypes between the PRS and disease status. We applied our proposed method to an amyloid imaging genetic study of Alzheimer's disease (AD), identified multiple imaging mediators linking PRS with AD, and further demonstrated the promise of the PRS on mediator detection over individual variants alone.