- Browse by Author
Browsing by Author "Zhao, Shu"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Delayed and progressive damages to juvenile mice after moderate traumatic brain injury(Nature Publishing Group, 2018-05-09) Zhao, Shu; Wang, Xiaoting; Gao, Xiang; Chen, Jinhui; Neurological Surgery, School of MedicineSymptoms are commonly more severe in pediatric traumatic brain injury (TBI) patients than in young adult TBI patients. To understand the mechanism, juvenile mice received a controlled cortical impact (CCI) injury at moderate level. Tissue lesion and cell death were measured and compared to our previous reports on brain injury in the young adult mice that received same level of impact using same injury device. Tissue lesion and cell death in the cortex was much less in the juvenile mouse brain in the first few hours after injury. However, once the injury occurred, it developed more rapidly, lasted much longer, and eventually led to exaggerated cell death and a 32.7% larger tissue lesion cavity in the cortex of juvenile mouse brain than of young adult mouse brain. Moreover, we found significant cell death in the thalamus of juvenile brains at 72 h, which was not commonly seen in the young adult mice. In summary, cell death in juvenile mice was delayed, lasted longer, and finally resulted in more severe brain injury than in the young adult mice. The results suggest that pediatric TBI patients may have a longer therapeutic window, but they also need longer intensive clinical care after injury.Item Post-Injury Treatment of 7,8-Dihydroxyflavone Promotes Neurogenesis in the Hippocampus of the Adult Mouse(Mary Ann Liebert, 2016-11-15) Zhao, Shu; Yu, Alex; Wang, Xiaoting; Gao, Xiang; Chen, Jinhui; Neurological Surgery, School of MedicineTraumatic brain injury (TBI) at the moderate level of impact induces massive cell death and results in extensive dendrite degeneration in the brain, leading to persistent cognitive, sensory, and motor dysfunction. Our previous reports have shown that adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus after receiving a moderate TBI with a controlled cortical impact (CCI) device. There is no effective approach to prevent immature neuron death or degeneration following TBI. Our recent study found that pretreatment of 7,8-dihydroxyflavone (DHF), a small molecule imitating brain-derived neurotrophic factor, protected immature neurons in the hippocampus from death following TBI. In the present study, we systemically treated moderate CCI-TBI mice or sham surgery mice with DHF once a day for 2 weeks via intraperitoneal injection, and then assessed the immature neurons in the hippocampus the 2nd day after the last DHF injection. We found that post-injury treatment of DHF for 2 weeks not only increased the number of adult-born immature neurons in the hippocampus, but also promoted their dendrite arborization in the injured brain following TBI. Thus, DHF may be a promising compound that can promote neurogenesis and enhance immature neuron development following TBI.Item The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After Moderate Traumatic Brain Injury(Springer, 2016-04) Zhao, Shu; Gao, Xiang; Dong, Weiren; Chen, Jinhui; Department of Neurological Surgery, IU School of MedicineOur previous research showed that traumatic brain injury (TBI) induced by controlled cortical impact (CCI) not only causes massive cell death, but also results in extensive dendrite degeneration in those spared neurons in the cortex. Cell death and dendrite degeneration in the cortex may contribute to persistent cognitive, sensory, and motor dysfunction. There is still no approach available to prevent cells from death and dendrites from degeneration following TBI. When we treated the animals with a small molecule, 7,8-dihydroxyflavone (DHF) that mimics the function of brain-derived neurotrophic factor (BDNF) through provoking TrkB activation reduced dendrite swellings in the cortex. DHF treatment also prevented dendritic spine loss after TBI. Functional analysis showed that DHF improved rotarod performance on the third day after surgery. These results suggest that although DHF treatment did not significantly reduced neuron death, it prevented dendrites from degenerating and protected dendritic spines against TBI insult. Consequently, DHF can partially improve the behavior outcomes after TBI.Item The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury(Ovid Technologies (Wolters Kluwer) - Lippincott Williams & Wilkins, 2015-06) Chen, Liang; Gao, Xiang; Zhao, Shu; Hu, Weipeng; Chen, Jinhui; Department of Neurological Surgery, IU School of MedicinePrevious studies in rodents have shown that after a moderate traumatic brain injury (TBI) with a controlled cortical impact (CCI) device, the adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus. There is no effective approach for preventing immature neuron death after TBI. We found that tyrosine-related kinase B (TrkB), a receptor of brain-derived neurotrophic factor (BDNF), is highly expressed in adult-born immature neurons. We determined that the small molecule imitating BDNF, 7, 8-dihydroxyflavone (DHF), increased phosphorylation of TrkB in immature neurons both in vitro and in vivo. Pretreatment with DHF protected immature neurons from excitotoxicity-mediated death in vitro, and systemic administration of DHF before moderate CCI injury reduced the death of adult-born immature neurons in the hippocampus 24 hours after injury. By contrast, inhibiting BDNF signaling using the TrkB antagonist ANA12 attenuated the neuroprotective effects of DHF. These data indicate that DHF may be a promising chemical compound that promotes immature neuron survival after TBI through activation of the BDNF signaling pathway.Item Traumatic Brain Injury Severity Affects Neurogenesis in Adult Mouse Hippocampus(Mary Ann Liebert, 2016-04-15) Wang, Xiaoting; Gao, Xiang; Michalski, Stephanie; Zhao, Shu; Chen, Jinhui; Department of Neurological Surgery, School of MedicineTraumatic brain injury (TBI) has been proven to enhance neural stem cell (NSC) proliferation in the hippocampal dentate gyrus. However, various groups have reported contradictory results on whether TBI increases neurogenesis, partially due to a wide range in the severities of injuries seen with different TBI models. To address whether the severity of TBI affects neurogenesis in the injured brain, we assessed neurogenesis in mouse brains receiving different severities of controlled cortical impact (CCI) with the same injury device. The mice were subjected to mild, moderate, or severe TBI by a CCI device. The effects of TBI severity on neurogenesis were evaluated at three stages: NSC proliferation, immature neurons, and newly-generated mature neurons. The results showed that mild TBI did not affect neurogenesis at any of the three stages. Moderate TBI promoted NSC proliferation without increasing neurogenesis. Severe TBI increased neurogenesis at all three stages. Our data suggest that the severity of injury affects adult neurogenesis in the hippocampus, and thus it may partially explain the inconsistent results of different groups regarding neurogenesis following TBI. Further understanding the mechanism of TBI-induced neurogenesis may provide a potential approach for using endogenous NSCs to protect against neuronal loss after trauma.