ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhao, Miao"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats
    (Nature Publishing Group, 2016-07-08) He, Jian-Li; Zhao, Miao; Xia, Jing-Jun; Guan, Jian; Liu, Yang; Wang, Lu-Qi; Song, Dong-Xue; Qu, Mei-Yu; Zuo, Meng; Wen, Xin; Yu, Xue; Huo, Rong; Pan, Zhen-Wei; Ban, Tao; Zhang, Yan; Zhu, Jiu-Xin; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan; Department of Pediatrics, IU School of Medicine
    Fibroblast growth factor-21 (FGF21) is closely related to various metabolic and cardiovascular disorders. However, the direct targets and mechanisms linking FGF21 to blood pressure control and hypertension are still elusive. Here we demonstrated a novel regulatory function of FGF21 in the baroreflex afferent pathway (the nucleus tractus solitarii, NTS; nodose ganglion, NG). As the critical co-receptor of FGF21, β-klotho (klb) significantly expressed on the NTS and NG. Furthermore, we evaluated the beneficial effects of chronic intraperitoneal infusion of recombinant human FGF21 (rhFGF21) on the dysregulated systolic blood pressure, cardiac parameters, baroreflex sensitivity (BRS) and hyperinsulinemia in the high fructose-drinking (HFD) rats. The BRS up-regulation is associated with Akt-eNOS-NO signaling activation in the NTS and NG induced by acute intravenous rhFGF21 administration in HFD and control rats. Moreover, the expressions of FGF21 receptors were aberrantly down-regulated in HFD rats. In addition, the up-regulated peroxisome proliferator-activated receptor-γ and -α (PPAR-γ/-α) in the NTS and NG in HFD rats were markedly reversed by chronic rhFGF21 infusion. Our study extends the work of the FGF21 actions on the neurocontrol of blood pressure regulations through baroreflex afferent pathway in HFD rats.
  • Loading...
    Thumbnail Image
    Item
    KCa1.1 β4-subunits is not responsible for iberiotoxin-resistance in baroreceptor neurons in adult male rats
    (Elsevier, 2015) Xu, Wen-Xiao; Ban, Tao; Wang, Lu-Qi; Zhao, Miao; Yin, Lei; Li, Guo; Chen, Hanying; Schild, John H.; Qiao, Guo-Fen; Yan, Jing-Long; Li, Bai-Yan; Biomedical Engineering, School of Engineering and Technology
  • Loading...
    Thumbnail Image
    Item
    Neuropeptide Y-mediated sex- and afferent-specific neurotransmissions contribute to sexual dimorphism of baroreflex afferent function
    (Impact Journals, 2016-10-04) Liu, Yang; Wu, Di; Qu, Mei-Yu; He, Jian-Li; Yuan, Mei; Zhao, Miao; Wang, Jian-Xin; He, Jian; Wang, Lu-Qi; Guo, Xin-Jing; Zuo, Meng; Zhao, Shu-Yang; Ma, Mei-Na; Li, Jun-Nan; Shou, Weinian; Qiao, Guo-Fen; Li, Bai-Yan; Department of Pediatrics, IU School of Medicine
    BACKGROUND: Molecular and cellular mechanisms of neuropeptide-Y (NPY)-mediated gender-difference in blood pressure (BP) regulation are largely unknown. METHODS: Baroreceptor sensitivity (BRS) was evaluated by measuring the response of BP to phenylephrine/nitroprusside. Serum NPY concentration was determined using ELISA. The mRNA and protein expression of NPY receptors were assessed in tissue and single-cell by RT-PCR, immunoblot, and immunohistochemistry. NPY was injected into the nodose while arterial pressure was monitored. Electrophysiological recordings were performed on nodose neurons from rats by patch-clamp technique. RESULTS: The BRS was higher in female than male and ovariectomized rats, while serum NPY concentration was similar among groups. The sex-difference was detected in Y1R, not Y2R protein expression, however, both were upregulated upon ovariectomy and canceled by estrogen replacement. Immunostaining confirmed Y1R and Y2R expression in myelinated and unmyelinated afferents. Single-cell PCR demonstrated that Y1R expression/distribution was identical between A- and C-types, whereas, expressed level of Y2R was ~15 and ~7 folds higher in Ah- and C-types than A-types despite similar distribution. Activation of Y1R in nodose elevated BP, while activation of Y2R did the opposite. Activation of Y1R did not alter action potential duration (APD) of A-types, but activation of Y2R- and Y1R/Y2R in Ah- and C-types frequency-dependently prolonged APD. N-type ICa was reduced in A-, Ah- and C-types when either Y1R, Y2R, or both were activated. The sex-difference in Y1R expression was also observed in NTS. CONCLUSIONS: Sex- and afferent-specific expression of Neuropeptide-Y receptors in baroreflex afferent pathway may contribute to sexual-dimorphic neurocontrol of BP regulation.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University