- Browse by Author
Browsing by Author "Zhao, Jianxun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Adaptive Kriging Method for Uncertainty Quantification of the Photoelectron Sheath and Dust Levitation on the Lunar Surface(ASME, 2021) Wei, Xinpeng; Zhao, Jianxun; He, Xiaoming; Hu, Zhen; Du, Xiaoping; Han, Daoru; Mechanical and Energy Engineering, School of Engineering and TechnologyThis paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper and lower bounds of the electric potential and that of dust levitation height, given the intervals of model parameters in the one-dimensional (1D) photoelectron sheath model. To improve the calculation efficiency, we employ the widely used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate and efficient.Item Photoelectron Sheath near the Lunar Surface: Fully Kinetic Modeling and Uncertainty Quantification Analysis(American Institute of Aeronautics and Astronautics, 2020-01-05) Zhao, Jianxun; Wei, Xinpeng; Hu, Zhangli; He, Xiaoming; Han, Daoru; Hu, Zhen; Du, Xiaoping; Mechanical and Energy Engineering, School of Engineering and TechnologyThis paper considers plasma charging on the lunar surface with a focus on photoelectron sheath. The plasma species includes ambient solar wind (protons and electrons) and photoelectrons emitted from the illuminated lunar surface. This work is motivated by the high computational cost associated with uncertainty quantification (UQ) analysis of plasma simulations using high-fidelity fully kinetic models. In this paper, we study the photoelectron sheath near the lunar surface with a focus on effects of variables of uncertainty (such as the ambient electron density or photoelectron temperature) on the plasma environment. A fully kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is utilized to simulate the plasma interaction near the lunar surface and the resulting photoelectron sheath. For the uncertainty quantification analysis, this PIC code is treated as a black box providing high-fidelity quantities of interest, which are also used to construct efficient reduced-order models to perform UQ analysis. A 1-D configuration is first studied to demonstrate the procedure and capability of the UQ analysis. The rest of the paper is organized as follows. Section III presents the analytic and numerical solutions of the 1-D photoelectron sheath. Verification and validation of the FD-PIC code for photoelectron sheath solution is shown. Section IV describes the Kriging model and the uncertainty quantification approach. Section V discusses the UQ analysis of the 1-D photoelectron sheath. The conclusion is given in Section VI.