- Browse by Author
Browsing by Author "Zhang, Eric"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Augmentation of response to nab-paclitaxel by inhibition of insulin-like growth factor (IGF) signaling in preclinical pancreatic cancer models(Impact Journals, 2016-07-26) Awasthi, Niranjan; Scire, Emily; Monahan, Sheena; Grojean, Meghan; Zhang, Eric; Schwarz, Margaret A.; Schwarz, Roderich E.; Department of Surgery, IU School of MedicineNab-paclitaxel has recently shown greater efficacy in pancreatic ductal adenocarcinoma (PDAC). Insulin like growth factor (IGF) signaling proteins are frequently overexpressed in PDAC and correlate with aggressive tumor phenotype and poor prognosis. We evaluated the improvement in nab-paclitaxel response by addition of BMS-754807, a small molecule inhibitor of IGF-1R/IR signaling, in preclinical PDAC models. In subcutaneous xenografts using AsPC-1 cells, average net tumor growth in different therapy groups was 248.3 mm3 in controls, 42.4 mm3 after nab-paclitaxel (p = 0.002), 93.3 mm3 after BMS-754807 (p = 0.01) and 1.9 mm3 after nab-paclitaxel plus BMS-754807 (p = 0.0002). In subcutaneous xenografts using Panc-1 cells, average net tumor growth in different therapy groups was: 294.3 mm3 in controls, 23.1 mm3 after nab-paclitaxel (p = 0.002), 118.2 mm3 after BMS-754807 (p = 0.02) and -87.4 mm3 (tumor regression) after nab-paclitaxel plus BMS-754807 (p = 0.0001). In peritoneal dissemination model using AsPC-1 cells, median animal survival was increased compared to controls (21 days) after therapy with nab-paclitaxel (40 days, a 90% increase, p = 0.002), BMS-754807 (27 days, a 29% increase, p = 0.01) and nab-paclitaxel plus BMS-754807 (47 days, a 124% increase, p = 0.005), respectively. Decrease in proliferation and increase in apoptosis by nab-paclitaxel and BMS-754807 therapy correlated with their in vivo antitumor activity. In vitro analysis revealed that the addition of IC25 dose of BMS-754807 decreased the nab-paclitaxel IC50 of PDAC cell lines. BMS-754807 therapy decreased phospho-IGF-1R/IR and phospho-AKT expression, and increased cleavage of caspase-3 and PARP-1. These results support the potential of BMS-754807 in combination with nab-paclitaxel as an effective targeting option for pancreatic cancer therapy.Item E2F1 Suppresses Oxidative Metabolism and Endothelial Differentiation of Bone Marrow Progenitor Cells(American Heart Association, 2018-03-02) Xu, Shiyue; Tao, Jun; Yang, Liu; Zhang, Eric; Boriboun, Chan; Zhou, Junlan; Sun, Tianjiao; Cheng, Min; Huang, Kai; Shi, Jiawei; Dong, Nian-Guo; Liu, Qinghua; Zhao, Ting C.; Qiu, Hongyu; Harris, Robert A.; Chandel, Navdeep S.; Losordo, Douglas W.; Qin, Gangjian; Biochemistry and Molecular Biology, School of MedicineRATIONALE: The majority of current cardiovascular cell therapy trials use bone marrow progenitor cells (BM PCs) and achieve only modest efficacy; the limited potential of these cells to differentiate into endothelial-lineage cells is one of the major barriers to the success of this promising therapy. We have previously reported that the E2F transcription factor 1 (E2F1) is a repressor of revascularization after ischemic injury. OBJECTIVE: We sought to define the role of E2F1 in the regulation of BM PC function. METHODS AND RESULTS: Ablation of E2F1 (E2F1 deficient) in mouse BM PCs increases oxidative metabolism and reduces lactate production, resulting in enhanced endothelial differentiation. The metabolic switch in E2F1-deficient BM PCs is mediated by a reduction in the expression of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase kinase 2; overexpression of pyruvate dehydrogenase kinase 4 reverses the enhancement of oxidative metabolism and endothelial differentiation. Deletion of E2F1 in the BM increases the amount of PC-derived endothelial cells in the ischemic myocardium, enhances vascular growth, reduces infarct size, and improves cardiac function after myocardial infarction. CONCLUSION: Our results suggest a novel mechanism by which E2F1 mediates the metabolic control of BM PC differentiation, and strategies that inhibit E2F1 or enhance oxidative metabolism in BM PCs may improve the effectiveness of cell therapy.