- Browse by Author
Browsing by Author "Zhang, Yuting"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Neutrophils Resist Ferroptosis and Promote Breast Cancer Metastasis through Aconitate Decarboxylase 1(Elsevier, 2023) Zhao, Yun; Liu, Zhongshun; Liu, Guoqiang; Zhang, Yuting; Liu, Sheng; Gan, Dailin; Chang, Wennan; Peng, Xiaoxia; Sung, Eun Suh; Gilbert, Keegan; Zhu, Yini; Wang, Xuechun; Zeng, Ziyu; Baldwin, Hope; Ren, Guanzhu; Weaver, Jessica; Huron, Anna; Mayberry, Toni; Wang, Qingfei; Wang, Yujue; Diaz-Rubio, Maria Elena; Su, Xiaoyang; Stack, M. Sharon; Zhang, Siyuan; Lu, Xuemin; Sheldon, Ryan D.; Li, Jun; Zhang, Chi; Wan, Jun; Lu, Xin; Medical and Molecular Genetics, School of MedicineMetastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPβ pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.Item Protein Signature Differentiating Neutrophils and Myeloid-Derived Suppressor Cells Determined Using a Human Isogenic Cell Line Model and Protein Profiling(MDPI, 2024-05-07) Zhang, Yuting; Hu, Jin; Zhang, Xiashiyao; Liang, Minzhi; Wang, Xuechun; Gan, Dailin; Li, Jun; Lu, Xuemin; Wan, Jun; Feng, Shan; Lu, Xin; Medical and Molecular Genetics, School of MedicineMyeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14−CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature (“cluster 6”) that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.Item Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment(China Anti-Cancer Association, 2020-02-15) Zhang, Yuting; Guoqiang, Liu; Sun, Miaomiao; Lu, Xin; Medicine, School of MedicineNeutrophils, the most abundant leukocytes in human blood, are essential fighter immune cells against microbial infection. Based on the finding that neutrophils can either restrict or promote cancer progression, tumor-associated neutrophils (TAN) are classified into anti-tumor N1 and pro-tumor N2 subsets. One of the major mechanisms underlying the tumor-promoting function of N2-TANs is suppression of adaptive immune cells, in particular, cytotoxic T lymphocytes. Currently, no established methodologies are available that can unequivocally distinguish immunosuppressive TANs and granulocytic/polymorphonuclear myeloid-derived suppressor cells (G/PMN-MDSC). In view of the critical role of PMN-MDSCs in immune evasion and resistance to cancer immunotherapy, as established from data obtained with diverse cancer models, therapeutic strategies targeting these cells have been actively developed to enhance the efficacy of immunotherapy. Here, we have reviewed the available literature on strategies targeting PMN-MDSCs and summarized the findings into four categories: (1) depletion of existing PMN-MDSCs, (2) blockade of the development of PMN-MDSCs, (3) blockade of PMN-MDSC recruitment, (4) inhibition of immunosuppressive function. Owing to their high mobility to inflamed organs and ability to trespass the blood-brain barrier, neutrophils are outstanding candidate carriers in nanoparticle-based therapies. Another attractive application of neutrophils in cancer therapy is the use of neutrophil membrane-derived nanovesicles as a surrogate of extracellular vesicles for more efficient and scalable drug delivery. In the second part of the review, we have highlighted recent advances in the field of neutrophil-based cancer drug delivery. Overall, we believe that neutrophil-based therapeutics are a rapidly growing area of cancer therapy with significant potential benefits.