ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Min"

Now showing 1 - 10 of 19
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Absorptive capacity and mass customization capability
    (Emerald, 2015) Zhang, Min; Zhao, Xiande; Lyles, Marjorie A.; Guo, Hangfei; School of Business
    Purpose – The purpose of this paper is to investigate the effects of a manufacturer’s absorptive capacity (AC) on its mass customization capability (MCC). Design/methodology/approach – The authors conceptualize AC within the supply chain context as four processes: knowledge acquisition from customers, knowledge acquisition from suppliers, knowledge assimilation, and knowledge application. The authors then propose and empirically test a model on the relationships among AC processes and MCC using structural equation modeling and data collected from 276 manufacturing firms in China. Findings – The results show that AC significantly improves MCC. In particular, knowledge sourced from customers and suppliers enhances MCC in three ways: directly, indirectly through knowledge application, and indirectly through knowledge assimilation and application. The study also finds that knowledge acquisition significantly enhances knowledge assimilation and knowledge application, and that knowledge assimilation leads to knowledge application. Originality/value – This study provides empirical evidence of the effects of AC processes on MCC. It also indicates the relationships among AC processes. Moreover, it reveals the mechanisms through which knowledge sourced from customers and suppliers contributes to MCC development, and demonstrates the importance of internal knowledge management practices in exploiting knowledge from supply chain partners. Furthermore, it provides guidelines for executives to decide how to manage supply chain knowledge and devote their efforts and resources in absorbing new knowledge for MCC development.
  • Loading...
    Thumbnail Image
    Item
    Altered metabolite levels and correlations in patients with colorectal cancer and polyps detected using seemingly unrelated regression analysis
    (Springer Nature, 2017-11) Chen, Chen; Gowda, G. A. Nagana; Zhu, Jiangjiang; Deng, Lingli; Gu, Haiwei; Chiorean, E. Gabriela; Zaid, Mohammad Abu; Harrison, Marietta; Zhang, Dabao; Zhang, Min; Raftery, Daniel; Graduate Medical Education, IU School of Medicine
    Introduction: Metabolomics technologies enable the identification of putative biomarkers for numerous diseases; however, the influence of confounding factors on metabolite levels poses a major challenge in moving forward with such metabolites for pre-clinical or clinical applications. Objectives: To address this challenge, we analyzed metabolomics data from a colorectal cancer (CRC) study, and used seemingly unrelated regression (SUR) to account for the effects of confounding factors including gender, BMI, age, alcohol use, and smoking. Methods: A SUR model based on 113 serum metabolites quantified using targeted mass spectrometry, identified 20 metabolites that differentiated CRC patients (n = 36), patients with polyp (n = 39), and healthy subjects (n = 83). Models built using different groups of biologically related metabolites achieved improved differentiation and were significant for 26 out of 29 groups. Furthermore, the networks of correlated metabolites constructed for all groups of metabolites using the ParCorA algorithm, before or after application of the SUR model, showed significant alterations for CRC and polyp patients relative to healthy controls. Results: The results showed that demographic covariates, such as gender, BMI, BMI2, and smoking status, exhibit significant confounding effects on metabolite levels, which can be modeled effectively. Conclusion: These results not only provide new insights into addressing the major issue of confounding effects in metabolomics analysis, but also shed light on issues related to establishing reliable biomarkers and the biological connections between them in a complex disease.
  • Loading...
    Thumbnail Image
    Item
    Clinical Predictors of Functional Cure in Children 1–6 Years-old with Chronic Hepatitis B
    (Xia & He, 2022) Pan, Jing; Wang, Haiyan; Yao, Tiantian; Liao, Xuejiao; Cheng, Hao; Liangpunsakul, Suthat; Wang, Yan; Zhang, Min; Zhang, Zheng; Medicine, School of Medicine
    Background and aims: Hepatitis B surface antigen (HBsAg) clearance is significantly more common in children with chronic hepatitis B (CHB) than in adults; however, the possible influencing factors related to HBsAg loss have yet to be found. This study aimed to explore the efficacy of long-term interferon (IFN)α therapy in treating children with CHB and analyzed the factors influencing functional cure after treatment. Methods: A total of 236 children aged 1-6 years and diagnosed with CHB via liver biopsy were included in the study, all receiving IFNα treatment (IFNα-2b monotherapy, IFNα-2b followed by lamivudine [LAM] or IFNα-2b combined with LAM) and followed up for 144 weeks. A comprehensive analysis was conducted on clinical data, including biochemical items, serum markers of hepatitis B virus (HBV) and immunological indexes, and logistic regression analysis was used to screen the influencing factors related to HBsAg loss. Results: The cumulative loss rates of HBsAg were 79.5%, 62.1% and 42.1% at 144 weeks after the start of treatment in the 1-3 years-old group, 3-5 years-old group and 5-7 years-old group, respectively (p<0.05). IFNα-2b combined with LAM treatment displayed the highest HBsAg loss rates compared with monotherapy and sequential treatment (p=0.011). Younger baseline age and lower HBsAg levels were independent factors for the prediction of HBsAg loss (p<0.05). The baseline PreS1 and hepatitis B core antibody levels in the HBsAg loss group were lower than those in the HBsAg non-loss group. In addition, the PreS1 level was positively corelated with the level of HBsAg, HBV DNA and liver inflammation. Conclusions: Long-term treatment with IFNα was effective in achieving HBsAg loss in CHB children aged 1-6 years-old. Age less than 3 years-old and lower HBsAg levels are independent predictors of functional cure in children with CHB.
  • Loading...
    Thumbnail Image
    Item
    Effects of absorptive capacity, trust and information systems on product innovation
    (Emerald, 2018) Zhang, Min; Zhao, Xiande; Lyles, Marjorie A.; Kelley School of Business - Indianapolis
    Purpose The purpose of this paper is to empirically investigate the mechanisms through which absorptive capacity (AC), trust and information systems jointly influence product innovation. Design/methodology/approach This study proposes a research model to examine the mediating role of AC on the impacts of trust and information systems on product innovation and the moderating roles of trust and information systems on the relationship between AC and product innovation. The hypotheses are empirically tested using regression and bootstrapping methods and data collected from 276 manufacturing firms in China. Findings This study finds that trust and information systems positively affect product innovation and the effects are fully mediated by AC. AC also significantly enhances product innovation, and the effect is amplified by trust as well as information systems. In addition, the results show that trust and information systems improve AC both individually and interactively. Originality/value The findings extend existing knowledge on the antecedents of AC and the contingent conditions under which a manufacturer’s AC is more effective than that of its rivals. The results also clarify the mechanisms through which trust and information systems improve product innovation. This study provides insights into the complex relationships among a manufacturer’s sociotechnical systems, knowledge management processes and new product development, and reveals how to design organisational systems to fully capitalise the value of AC on product innovation.
  • Loading...
    Thumbnail Image
    Item
    Epidermal Growth Factor Receptor (EGFR) Pathway Genes and Interstitial Lung Disease: An Association Study
    (Springer Nature, 2014-05-13) Li, Chong; Wei, Rongrong; Jones-Hall, Yava L.; Vittal, Ragini; Zhang, Min; Liu, Wanqing; Medicine, School of Medicine
    The etiology and pathogenesis of idiopathic interstitial lung disease (ILD) remain incompletely understood. Genetic susceptibility to ILD has been demonstrated in previous studies. It is well known that EGFR inhibitors can induce ILD in human lung cancer patient with ethnic differences, which prompted us to hypothesize that genetic variation in EGFR pathway genes confer susceptibility to ILD. We aimed in this study to investigate whether functional polymorphisms of EGFR and its ligands genes (EGF and TGFA) were associated with ILD. Three EGFR [-216G/T (rs712830), -191A/C (rs712829), 497R > K(A/G) (rs2227983)], one EGF [61A/G, (rs4444903)] and one TGFA (rs3821262C/T) polymorphisms previously demonstrated to alter gene functions were genotyped in 229 sporadic idiopathic ILD patients and 693 normal healthy individuals. Allelic and genotypic association tests between these polymorphisms and ILD were performed. The EGF 61A/G polymorphism was significantly associated with elevated risk of ILD, with the frequency of G allele significantly increased in the ILD patient population (OR = 1.33, 95%CI = 1.07-1.66, P = 0.0099). None of the other polymorphisms were associated with risk of ILD. Our study suggested that the EGF 61A/G polymorphism may be associated with sporadic ILD. While a false positive finding cannot be excluded, independent studies are warranted to further validate this result.
  • Loading...
    Thumbnail Image
    Item
    Fatty acid desaturase 1 gene polymorphisms control human hepatic lipid composition
    (Wiley, 2015-01) Wang, Libo; Athinarayanan, Shaminie; Jiang, Guanglong; Chalasani, Naga; Zhang, Min; Liu, Wanqing; Department of Medical and Molecular Genetics, IU School of Medicine
    Fatty acid desaturase (FADS) genes and their variants have been associated with multiple metabolic phenotypes, including liver enzymes and hepatic fat accumulation, but the detailed mechanism remains unclear. We aimed to delineate the role of FADSs in modulating lipid composition in human liver. We performed a targeted lipidomic analysis of a variety of phospholipids, sphingolipids, and ceramides among 154 human liver tissue samples. The associations between previously genome-wide association studies (GWASs)-identified six FADS single-nucleotide polymorphisms (SNPs), and these lipid levels as well as total hepatic fat content (HFC) were tested. The potential function of these SNPs in regulating transcription of three FADS genes (FADS1, FADS2, and FADS3) in the locus was also investigated. We found that though these SNPs were in high linkage disequilibrium (r(2) > 0.8), the rare alleles of these SNPs were consistently and significantly associated with the accumulation of multiple long-chain fatty acids (LCFAs), with C47H85O13P (C36:4), a phosphatidylinositol (PI), and C43H80O8PN (C38:3), a phosphatidylethanolamine (PE), reached the Bonferroni corrected significance (P < 3 × 10(-4)). Meanwhile, these SNPs were significantly associated with increased ratios between the more saturated and relatively less saturated forms of LCFAs, especially between PEs, PIs, and phosphatidylcholines (PCs; P ≤ 3.5 × 10(-6)). These alleles were also associated with increased total HFC (P < 0.05). Further analyses revealed that these alleles were associated with decreased hepatic expression of FADS1 (P = 0.0018 for rs174556), but not FADS2 or FADS3 (P > 0.05). CONCLUSION: Our findings revealed critical insight into the mechanism underlying FADS1 and its polymorphisms in modulating hepatic lipid deposition by altering gene transcription and controlling lipid composition in human livers.
  • Loading...
    Thumbnail Image
    Item
    Gene-by-Diet Interactions Affect Serum 1,25-Dihydroxyvitamin D Levels in Male BXD Recombinant Inbred Mice
    (Oxford University Press, 2016-02) Fleet, James C.; Replogle, Rebecca A.; Reyes-Fernandez, Perla; Wang, Libo; Zhang, Min; Clinkenbeard, Erica L.; White, Kenneth E.; Department of Medical & Molecular Genetics, IU School of Medicine
    1,25-Dihydroxyvitamin D (1,25[OH]2D) regulates calcium (Ca), phosphate, and bone metabolism. Serum 1,25(OH)2D levels are reduced by low vitamin D status and high fibroblast growth factor 23 (FGF23) levels and increased by low Ca intake and high PTH levels. Natural genetic variation controls serum 25-hydroxyvitamin D (25[OH]D) levels, but it is unclear how it controls serum 1,25(OH)2D or the response of serum 1,25(OH)2D levels to dietary Ca restriction (RCR). Male mice from 11 inbred lines and from 51 BXD recombinant inbred lines were fed diets with either 0.5% (basal) or 0.25% Ca from 4 to 12 weeks of age (n = 8 per line per diet). Significant variation among the lines was found in basal serum 1,25(OH)2D and in the RCR as well as basal serum 25(OH)D and FGF23 levels. 1,25(OH)2D was not correlated to 25(OH)D but was negatively correlated to FGF23 (r = -0.5). Narrow sense heritability of 1,25(OH)2D was 0.67 on the 0.5% Ca diet, 0.66 on the 0.25% Ca diet, and 0.59 for the RCR, indicating a strong genetic control of serum 1,25(OH)2D. Genetic mapping revealed many loci controlling 1,25(OH)2D (seven loci) and the RCR (three loci) as well as 25(OH)D (four loci) and FGF23 (two loci); a locus on chromosome 18 controlled both 1,25(OH)2D and FGF23. Candidate genes underlying loci include the following: Ets1 (1,25[OH]2D), Elac1 (FGF23 and 1,25[OH]2D), Tbc1d15 (RCR), Plekha8 and Lyplal1 (25[OH]D), and Trim35 (FGF23). This report is the first to reveal that serum 1,25(OH)2D levels are controlled by multiple genetic factors and that some of these genetic loci interact with the dietary environment.
  • Loading...
    Thumbnail Image
    Item
    Genetic Polymorphism of Cytochrome P450 4F2, Vitamin E Level and Histological Response in Adults and Children with Nonalcoholic Fatty Liver Disease Who Participated in PIVENS and TONIC Clinical Trials
    (Public Library of Science, 2014-04-23) Athinarayanan, Shaminie; Wei, Rongrong; Zhang, Min; Bai, Shaochun; Traber, Maret G.; Yates, Katherine; Cummings, Oscar W.; Molleston, Jean; Liu, Wanqing; Chalasani, Naga; Medical and Molecular Genetics, School of Medicine
    Vitamin E improved liver histology in children and adults with NAFLD who participated in TONIC and PIVENS clinical trials, but with significant inter-individual variability in its efficacy. Cytochrome P450 4F2 (CYP4F2) is the major enzyme metabolizing Vit E, with two common genetic variants (V433M, rs2108622 and W12G, rs3093105) found to alter its activity. We investigated the relationship between CYP4F2 genotypes, α-tocopherol levels and histological improvement in these two trials. V433M and W12G variants were genotyped in TONIC (n = 155) and PIVENS (n = 213) DNA samples. The relationships between CYP4F2 genotypes, plasma α-tocopherol levels at baseline and weeks 48 (w48) and 96 (w96) and histological end points (overall improvement in liver histology and resolution of NASH) were investigated. As a result, the V433M genotype was significantly associated with baseline plasma α-tocopherol in the TONIC trial (p = 0.004), but not in PIVENS. Among those receiving Vit E treatment, CYP4F2 V433M genotype was associated with significantly decreased plasma α-tocopherol levels at w48 (p = 0.003 for PIVENS and p = 0.026 for TONIC) but not at w96. The w96 α-tocopherol level was significantly associated with resolution of NASH (p = 0.006) and overall histology improvement (p = 0.021)in the PIVENS, but not in the TONIC trial. There was no significant association between CYP4F2 genotypes and histological end points in either trial. Our study suggested the a moderate role of CYP4F2 polymorphisms in affecting the pharmacokinetics of Vit E as a therapeutic agent. In addition, there may be age-dependent relationship between CYP4F2 genetic variability and Vit E pharmacokinetics in NAFLD.
  • Loading...
    Thumbnail Image
    Item
    Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency
    (Elsevier, 2017-12) Zhang, Min; Gallego-Delgado, Julio; Fernandez-Arias, Cristina; Waters, Norman C.; Rodriguez, Ana; Tsu, Moriya; Wek, Ronald C.; Nussenzweig, Victor; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of Medicine
    Artemisinin and its derivatives (ARTs) are frontline antimalarial drugs. However, ART monotherapy is associated with a high frequency of recrudescent infection, resulting in treatment failure. A subset of parasites is thought to undergo ART-induced latency, but the mechanisms remain unknown. Here, we report that ART treatment results in phosphorylation of the parasite eukaryotic initiation factor-2α (eIF2α), leading to repression of general translation and latency induction. Enhanced phosphorylated eIF2α correlates with high rates of recrudescence following ART, and inhibiting eIF2α dephosphorylation renders parasites less sensitive to ART treatment. ART-induced eIF2α phosphorylation is mediated by the Plasmodium eIF2α kinase, PK4. Overexpression of a PK4 dominant-negative or pharmacological inhibition of PK4 blocks parasites from entering latency and abolishes recrudescence after ART treatment of infected mice. These results show that translational control underlies ART-induced latency and that interference with this stress response may resolve the clinical problem of recrudescent infection.
  • Loading...
    Thumbnail Image
    Item
    Monoclonal Antibodies against Plasmodium falciparum Circumsporozoite Protein
    (MDPI, 2017-08-23) Zhang, Min; Mandraju, Rajakumar; Rai, Urvashi; Shiratsuchi, Takayuki; Tsuji, Moriya; Pharmacology and Toxicology, School of Medicine
    Malaria is a mosquito-borne infectious disease caused by the parasite Plasmodium spp. Malaria continues to have a devastating impact on human health. Sporozoites are the infective forms of the parasite inside mosquito salivary glands. Circumsporozoite protein (CSP) is a major and immunodominant protective antigen on the surface of Plasmodium sporozoites. Here, we report a generation of specific monoclonal antibodies that recognize the central repeat and C-terminal regions of P. falciparum CSP. The monoclonal antibodies 3C1, 3C2, and 3D3-specific for the central repeat region-have higher titers and protective efficacies against challenge with sporozoites compared with 2A10, a gold standard monoclonal antibody that was generated in early 1980s.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University