- Browse by Author
Browsing by Author "Zhang, Lili"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Fine mapping and expression of candidate genes within the chromosome 10 QTL region of the high and low alcohol-drinking rats(ScienceDirect, 2010-09) Bice, Paula J.; Liang, Tiebing; Zhang, Lili; Graves, Tamara J.; Carr, Lucinda G.; Lai, Dongbing; Kimpel, Mark W.; Foroud, Tatiana; Medicine, School of MedicineThe high and low alcohol-drinking (HAD and LAD) rats were selectively bred for differences in alcohol intake. The HAD/LAD rats originated from the N/Nih heterogeneous stock developed from intercrossing eight inbred rat strains. The HAD×LAD F2 were genotyped, and a powerful analytical approach, using ancestral recombination and F2 recombination, was used to narrow a quantitative trait loci (QTL) for alcohol drinking to a 2-cM region on distal chromosome 10 that was in common in the HAD1/LAD1 and HAD2/LAD2 analyses. Quantitative real-time PCR was used to examine mRNA expression of six candidate genes (Crebbp, Trap1, Gnptg, Clcn7, Fahd1, and Mapk8ip3) located within the narrowed QTL region in the HAD1/LAD1 rats. Expression was examined in five brain regions, including the nucleus accumbens, amygdala, caudate putamen, hippocampus, and prefrontal cortex. All six genes showed differential expression in at least one brain region. Of the genes tested in this study, Crebbp and Mapk8ip3 may be the most promising candidates with regard to alcohol drinking.Item Protein Kinase A Is a Master Regulator of Physiological and Pathological Cardiac Hypertrophy(American Heart Association, 2024) Bai, Yingyu; Zhang, Xiaoying; Li, Ying; Qi, Fei; Liu, Chong; Ai, Xiaojie; Tang, Mingxin; Szeto, Christopher; Gao, Erhe; Hua, Xiang; Xie, Mingxing; Wang, Xuejun; Tian, Ying; Chen, Yongjie; Huang, Guowei; Zhang, Junping; Xiao, Weidong; Zhang, Lili; Liu, Xueyuan; Yang, Qing; Houser, Steven R.; Chen, Xiongwen; Pediatrics, School of MedicineBackground: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. Methods: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. Results: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3β signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. Conclusions: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.