- Browse by Author
Browsing by Author "Zhang, Junping"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item A novel class of self-complementary AAV vectors with multiple advantages based on cceAAV lacking mutant ITR(Elsevier, 2024-02-03) Zhang, Junping; Frabutt, Dylan A.; Chrzanowski, Matthew; Li, Ning; Miller, Lohra M.; Tian, Jiahe; Mulcrone, Patrick L.; Lam, Anh K.; Draper, Benjamin E.; Jarrold, Martin F.; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineSelf-complementary AAV vectors (scAAV) use a mutant inverted terminal repeat (mITR) for efficient packaging of complementary stranded DNA, enabling rapid transgene expression. However, inefficient resolution at the mITR leads to the packaging of monomeric or subgenomic AAV genomes. These noncanonical particles reduce transgene expression and may affect the safety of gene transfer. To address these issues, we have developed a novel class of scAAV vectors called covalently closed-end double-stranded AAV (cceAAV) that eliminate the mITR resolution step during production. Instead of using a mutant ITR, we used a 56-bp recognition sequence of protelomerase (TelN) to covalently join the top and bottom strands, allowing the vector to be generated with just a single ITR. To produce cceAAV vectors, the vector plasmid is initially digested with TelN, purified, and then subjected to a standard triple-plasmid transfection protocol followed by traditional AAV vector purification procedures. Such cceAAV vectors demonstrate yields comparable to scAAV vectors. Notably, we observed enhanced transgene expression as compared to traditional scAAV vectors. The treatment of mice with hemophilia B with cceAAV-FIX resulted in significantly enhanced long-term FIX expression. The cceAAV vectors hold several advantages over scAAV vectors, potentially leading to the development of improved human gene therapy drugs.Item Chemical modification of AAV9 capsid with N-ethyl maleimide alters vector tissue tropism(Springer Nature, 2023-05-25) Mulcrone, Patrick L.; Lam, Anh K.; Frabutt, Dylan; Zhang, Junping; Chrzanowski, Matthew; Herzog, Roland W.; Xiao, Weidon; Pediatrics, School of MedicineAlthough more adeno-associated virus AAV-based drugs enter the clinic, vector tissue tropism remains an unresolved challenge that limits its full potential despite that the tissue tropism of naturally occurring AAV serotypes can be altered by genetic engineering capsid vie DNA shuffling, or molecular evolution. To further expand the tropism and thus potential applications of AAV vectors, we utilized an alternative approach that employs chemical modifications to covalently link small molecules to reactive exposed Lysine residues of AAV capsids. We demonstrated that AAV9 capsid modified with N-ethyl Maleimide (NEM) increased its tropism more towards murine bone marrow (osteoblast lineage) while decreased transduction of liver tissue compared to the unmodified capsid. In the bone marrow, AAV9-NEM transduced Cd31, Cd34, and Cd90 expressing cells at a higher percentage than unmodified AAV9. Moreover, AAV9-NEM localized strongly in vivo to cells lining the calcified trabecular bone and transduced primary murine osteoblasts in culture, while WT AAV9 transduced undifferentiated bone marrow stromal cells as well as osteoblasts. Our approach could provide a promising platform for expanding clinical AAV development to treat bone pathologies such as cancer and osteoporosis. Thus, chemical engineering the AAV capsid holds great potential for development of future generations of AAV vectors.Item Comprehensive Comparison of AAV Purification Methods: Iodixanol Gradient Centrifugation vs. Immuno-Affinity Chromatography(Hindawi, 2023) Lam, Anh K.; Mulcrone, Patrick L.; Frabutt, Dylan; Zhang, Junping; Chrzanowski, Matthew; Arisa, Sreevani; Munoz, Maite; Li, Xin; Biswas, Moanaro; Markusic, David; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated viruses (AAVs) have emerged as a widely used gene delivery platform for both basic research and human gene therapy. To ensure and improve the safety profile of AAV vectors, substantial efforts have been dedicated to the vector production process development using suspension HEK293 cells. Here, we studied and compared two downstream purification methods, iodixanol gradient ultracentrifugation versus immuno-affinity chromatography (POROS™ CaptureSelect™ AAVX column). We tested multiple vector batches that were separately produced (including AAV5, AAV8, and AAV9 serotypes). To account for batch-to-batch variability, each batch was halved for subsequent purification by either iodixanol gradient centrifugation or affinity chromatography. In parallel, purified vectors were characterized, and transduction was compared both in vitro and in vivo in mice (using multiple transgenes: Gaussia luciferase, eGFP, and human factor IX). Each purification method was found to have its own advantages and disadvantages regarding purity, viral genome (vg) recovery, and relative empty particle content. Differences in transduction efficiency were found to reflect batch-to-batch variability rather than disparities between the two purification methods, which were similarly capable of yielding potent AAV vectors.Item Cryptic resolution sites in the vector plasmid lead to the heterogeneities in the rAAV vectors(Wiley, 2023) Zhang, Junping; Chrzanowski, Matthew; Frabutt, Dylan A.; Lam, Anh K.; Mulcrone, Patrick L.; Li, Lei; Konkle, Barbara A.; Miao, Carol H.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant adeno-associated virus (rAAV) vectors carry a cassette of interest retaining only the inverted terminal repeats (ITRs) from the wild-type virus. Conventional rAAV production primarily uses a vector plasmid as well as helper genes essential for AAV replication and packaging. Nevertheless, plasmid backbone related contaminants have been a major source of vector heterogeneity. The mechanism driving the contamination phenomenon has yet to be elucidated. Here we identified cryptic resolution sites in the plasmid backbone as a key source for producing snapback genomes, which leads to the increase of vector genome heterogeneity in encapsidated virions. By using a single ITR plasmid as a model molecule and mapping subgenomic particles, we found that there exist a few typical DNA break hotspots in the vector DNA plasmid backbone, for example, on the ampicillin DNA element, called aberrant rescue sites. DNA around these specific breakage sites may assume some typical secondary structures. Similar to normal AAV vectors, plasmid DNA with a single ITR was able to rescue and replicate efficiently. These subgenomic DNA species significantly compete for trans factors required for rAAV rescue, replication, and packaging. The replication of single ITR contaminants during AAV production is independent of size. Packaging of these species is greatly affected by its size. A single ITR and a cryptic resolution site in the plasmid work synergistically, likely causing a source of plasmid backbone contamination.Item "D" matters in recombinant AAV DNA packaging(Elsevier, 2021) Zhang, Junping; Guo, Ping; Xu, Yinxia; Mulcrone, Patrick L.; Samulski, R. Jude; Xiao, Weidong; Pediatrics, School of MedicineItem Effects of Thermally Induced Configuration Changes on rAAV Genome’s Enzymatic Accessibility(Elsevier, 2020-09-11) Xu, Yinxia; Guo, Ping; Zhang, Junping; Chrzanowski, Matthew; Chew, Helen; Firrman, Jenni A.; Sang, Nianli; Diao, Yong; Xiao, Weidong; Pediatrics, School of MedicinePhysical titers for recombinant adeno-associated viral (rAAV) vectors are measured by quantifying viral genomes. It is generally perceived that AAV virions disassemble and release DNA upon thermal treatment. Here, we present data on enzymatic accessibility of rAAV genomes when AAV virions were subjected to thermal treatment. For rAAV vectors with a normal genome size (≤4.7 kb), thermal treatment at 75°C–99°C allowed only ∼10% of genomes to be detectable by quantitative real-time PCR. In contrast, greater than 70% of AAV genomes can be detected under similar conditions for AAV vectors with an oversized genome (≥5.0 kb). The permeability of virions, as measured by ethidium bromide (EB) staining, was enhanced by thermal stimulation. These results suggest that in rAAV virions with standard-sized genomes, the capsid and DNA are close enough in proximity for heat-induced “crosslinking,” which results in inaccessibility of vector DNA to enzymatic reactions. In contrast, rAAV vectors with oversized genomes release their DNA readily upon thermal treatment. These findings suggested that the spatial arrangement of capsid protein and DNA in AAV virions is genome-size dependent. These results provide a foundation for future improvement of vector assays, design, and applications.Item Fast and high-throughput LC-MS characterization, and peptide mapping of engineered AAV capsids using LC-MS/MS(Elsevier, 2022-09-24) Lam, Anh K.; Zhang, Junping; Frabutt, Dylan; Mulcrone, Patrick L.; Li, Lei; Zeng, Lifan; Herzog, Roland W.; Xiao, Weidong; Pediatrics, School of MedicineAdeno-associated virus (AAV) has emerged as a leading platform for gene therapy. With the skyrocketing rate of AAV research and the prevalence of many new engineered capsids being investigated in preclinical and clinical trials, capsid characterization plays a vital role in serotype confirmation and quality control. Further, peptide mapping the capsid proteins might inevitably be a future requirement by regulatory agencies since it is a critical step in good manufacturing practice (GMP) for biotherapeutic characterization. To overcome many challenges that traditional methods like SDS-PAGE and western blots carry, liquid chromatography and mass spectrometry (LC-MS) allows high resolution and sensitivity with great accuracy in characterizing the AAV capsid proteins. Our optimized LC-MS method provides quick sample preparation, a fast and high-throughput 4-min run, and high sensitivity, which allows for very efficient characterization of wild-type and engineered capsids. This study also reports the usage of LC-MS/MS peptide mapping of AAV capsid proteins to determine the most accessible lysine residues targeted by chemical modifications. Our detailed protocols are anticipated to promote the development and discovery of AAV variants with high accuracy and efficiency.Item Flies in the ointment: AAV vector preparations and tumor risk(Elsevier, 2021) Zhang, Junping; Yu, Xiangping; Herzog, Roland W.; Samulski, R. Jude; Xiao, Weidong; Pediatrics, School of MedicineItem Genomic Designs of rAAVs Contribute to Pathological Changes in the Livers and Spleens of Mice(Wiley, 2022) Mulcrone, Patrick L.; Zhang, Junping; Pride, P. Melanie; Lam, Anh K.; Frabutt, Dylan A.; Ball-Kell, Susan M.; Xiao, Weidong; Pediatrics, School of MedicineRecombinant AAV (rAAV) gene therapy is being investigated as an effective therapy for several diseases including hemophilia B. Reports of liver tumor development in certain mouse models due to AAV treatment and genomic integration of the rAAV vector has raised concerns about the long-term safety and efficacy of this gene therapy. To investigate whether rAAV treatment causes cancer, we utilized two mouse models, inbred C57BL/6 and hemophilia B Balb/C mice (HemB), to test if injecting a high dose of various rAAV8 vectors containing or lacking hFIX transgene, a Poly-A sequence, or the CB or TTR promoter triggered liver fibrosis and/or cancer development over the course of the 6.5-month study. We observed no liver tumors in either mouse cohort regardless of rAAV treatment through ultrasound imaging, gross anatomical assessment at sacrifice, and histology. We did, however, detect differences in collagen deposition in C57BL/6 livers and HemB spleens of rAAV-injected mice. Pathology reports of the HemB mice revealed many pathological phenomena, including fibrosis and inflammation in the livers and spleens across different AAV-injected HemB mice. Mice from both cohorts injected with the TTR-hFIX vector demonstrated minimal adverse events. While not tumorigenic, high dose of rAAVs, especially those with incomplete genomes, can influence liver and spleen health negatively that could be problematic for cementing AAVs as a broad therapeutic option in the clinic.Item Influence of N-glycosylation in the A and C domains on the immunogenicity of factor VIII(American Society of Hematology, 2022) Vander Kooi, Amber; Wang, Shuaishuai; Fan, Meng-Ni; Chen, Alex; Zhang, Junping; Chen, Chun-Yu; Cai, Xiaohe; Konkle, Barbara A.; Xiao, Weidong; Li, Lei; Miao, Carol H.; Pediatrics, School of MedicineThe most significant complication in hemophilia A treatment is the formation of inhibitors against factor VIII (FVIII) protein. Glycans and glycan-binding proteins are central to a properly functioning immune system. This study focuses on whether glycosylation of FVIII plays an important role in induction and regulation of anti-FVIII immune responses. We investigated the potential roles of 4 N-glycosylation sites, including N41 and N239 in the A1 domain, N1810 in the A3 domain, and N2118 in the C1 domain of FVIII, in moderating its immunogenicity. Glycomics analysis of plasma-derived FVIII revealed that sites N41, N239, and N1810 contain mostly sialylated complex glycoforms, while high mannose glycans dominate at site N2118. A missense variant that substitutes asparagine (N) to glutamine (Q) was introduced to eliminate glycosylation on each of these sites. Following gene transfer of plasmids encoding B domain deleted FVIII (BDD-FVIII) and each of these 4 FVIII variants, it was found that specific activity of FVIII in plasma remained similar among all treatment groups. Slightly increased or comparable immune responses in N41Q, N239Q, and N1810Q FVIII variant plasmid-treated mice and significantly decreased immune responses in N2118Q FVIII plasmid-treated mice were observed when compared with BDD-FVIII plasmid-treated mice. The reduction of inhibitor response by N2118Q FVIII variant was also demonstrated in AAV-mediated gene transfer experiments. Furthermore, a specific glycopeptide epitope surrounding the N2118 glycosylation site was identified and characterized to activate T cells in an FVIII-specific proliferation assay. These results indicate that N-glycosylation of FVIII can have significant impact on its immunogenicity.