ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zhang, Jun"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CBP loss cooperates with PTEN haploinsufficiency to drive prostate cancer: implications for epigenetic therapy
    (American Association for Cancer Research, 2014-04-01) Ding, Liya; Chen, Shuai; Liu, Ping; Pan, Yunqian; Zhong, Jian; Regan, Kevin M.; Wang, Liguo; Yu, Chunrong; Rizzardi, Tony; Cheng, Liang; Zhang, Jun; Schmechel, Stephen C.; Cheville, John C.; van Deursen, Jan; Tindall, Donald J.; Huang, Haojie; Department of Pathology & Laboratory Medicine, IU School of Medicine
    Despite the high incidence and mortality of prostate cancer, the etiology of this disease is not fully understood. In this study, we develop functional evidence for CBP and PTEN interaction in prostate cancer based on findings of their correlate expression in the human disease. Cbppc−/−;Ptenpc+/− mice exhibited higher cell proliferation in the prostate and an early onset of high-grade prostatic intraepithelial neoplasia. Levels of EZH2 methyltransferase were increased along with its Thr350 phosphorylation in both mouse Cbp−/−;Pten+/− and human prostate cancer cells. CBP loss and PTEN deficiency cooperated to trigger a switch from K27-acetylated histone H3 to K27-trimethylated bulk histones, in a manner associated with decreased expression of the growth inhibitory EZH2 target genes DAB2IP, p27KIP1 and p21CIP1. Conversely, treatment with the histone deacetylase inhibitor panobinostat reversed this switch, in a manner associated with tumor suppression in Cbppc−/−;Ptenpc+/− mice. Our findings show how CBP and PTEN interact to mediate tumor suppression in the prostate, establishing a central role for histone modification in the etiology of prostate cancer and providing a rationale for clinical evaluation of epigenetic targeted therapy in prostate cancer patients.
  • Loading...
    Thumbnail Image
    Item
    Characterization of the redox activity and disulfide bond formation in Apurinic/apyrimidinic endonuclease
    (2012-01) Luo, Meihua; Zhang, Jun; He, Hongzhen; Su, Dian; Chen, Qiujia; Gross, Michael L.; Kelley, Mark R.; Georgiadis, Millie M.
    Apurinic/apyrimidinic endonuclease (APE1) is an unusual nuclear redox factor in which the redox-active cysteines identified to date, C65 and C93, are surface inaccessible residues whose activities may be influenced by partial unfolding of APE1. To assess the role of the five remaining cysteines in APE1’s redox activity, double-cysteine mutants were analyzed, excluding C65A, which is redox-inactive as a single mutant. C93A/C99A APE1 was found to be redox-inactive, whereas other double-cysteine mutants retained the same redox activity as that observed for C93A APE1. To determine whether these three cysteines, C65, C93, and C99, were sufficient for redox activity, all other cysteines were substituted with alanine, and this protein was shown to be fully redox-active. Mutants with impaired redox activity failed to stimulate cell proliferation, establishing an important role for APE1’s redox activity in cell growth. Disulfide bond formation upon oxidation of APE1 was analyzed by proteolysis of the protein followed by mass spectrometry analysis. Within 5 min of exposure to hydrogen peroxide, a single disulfide bond formed between C65 and C138 followed by the formation of three additional disulfide bonds within 15 min; 10 total disulfide bonds formed within 1 h. A single mixed-disulfide bond involving C99 of APE1 was observed for the reaction of oxidized APE1 with thioredoxin (TRX). Disulfide-bonded APE1 or APE1–TRX species were further characterized by size exclusion chromatography and found to form large complexes. Taken together, our data suggest that APE1 is a unique redox factor with properties distinct from those of other redox factors.
  • Loading...
    Thumbnail Image
    Item
    Endoscopic ultrasound-guided fine needle aspiration cytology of metastatic renal cell carcinoma to the pancreas: A multi-center experience
    (Medknow Publications, 2016-10-03) Pannala, Rahul; Hallberg-Wallace, Karyn M.; Smith, Amber L.; Nassar, Aziza; Zhang, Jun; Zarka, Matthew; Reynolds, Jordan P.; Chen, Longwen
    Introduction: The increasing use of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) cytology to examine pancreatic neoplasms has led to an increase in the diagnosis of metastases to the pancreas. Renal cell carcinoma (RCC) is the most common metastasis to the pancreas. Our study examines 33 cases of metastatic RCC to the pancreas sampled by EUS-FNA from four large tertiary care hospitals. Materials and Methods: We searched the cytopathology database for RCC metastatic to the pancreas diagnosed by EUS-FNA from January 2005 to January 2015. Patient age, history of RCC, nephrectomy history, follow-up postnephrectomy, radiological impression, and EUS-FNA cytologic diagnosis were reviewed. Results: Thirty-three patients were identified. The average age was 67.5 years (range, 49–84 years). Thirty-two patients had a previous documented history of RCC. One patient had the diagnosis of pancreatic metastasis at the same time of the kidney biopsy. Thirty-one patients had been treated with nephrectomy. Twenty-seven patients were being monitored annually by computed tomography or magnetic resonance imaging. Twenty-five patients had multiple masses by imaging, but 8 patients had a single mass in the pancreas at the time of EUS-FNA. EUS-FNA of 20 cases showed classic morphology of RCC. Thirteen cases had either “atypical” clinical-radiologic features or morphologic overlaps with primary pancreatic neoplasms or other neoplasms. Cell blocks were made on all 13 cases and immunochemical stains confirmed the diagnosis. Conclusions: EUS-FNA cytology is useful for the diagnosis of metastatic RCC to the pancreas. Cytomorphology can be aided with patient history, imaging analyses, cell blocks, and immunochemical stains.
  • Loading...
    Thumbnail Image
    Item
    Inhibition of Apurinic/apyrimidinic endonuclease I’s redox activity revisited
    (2013-04) Zhang, Jun; Luo, Meihua; Marasco, Daniela; Logsdon, Derek; LaFavers, Kaice A.; Chen, Qiujia; Reed, April; Kelley, Mark R.; Gross, Michael L.; Georgiadis, Millie M.
    The essential base excision repair protein, apurinic/apyrimidinic endonuclease 1 (APE1), plays an important role in redox regulation in cells and is currently targeted for the development of cancer therapeutics. One compound that binds APE1 directly is (E)-3-[2-(5,6-dimethoxy-3-methyl-1,4-benzoquinonyl)]-2-nonylpropenoic acid (E3330). Here, we revisit the mechanism by which this negatively charged compound interacts with APE1 and inhibits its redox activity. At high concentrations (millimolar), E3330 interacts with two regions in the endonuclease active site of APE1, as mapped by hydrogen–deuterium exchange mass spectrometry. However, this interaction lowers the melting temperature of APE1, which is consistent with a loss of structure in APE1, as measured by both differential scanning fluorimetry and circular dichroism. These results are consistent with other findings that E3330 concentrations of >100 μM are required to inhibit APE1’s endonuclease activity. To determine the role of E3330’s negatively charged carboxylate in redox inhibition, we converted the carboxylate to an amide by synthesizing (E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxocyclohexa-1,4-dien-1-yl)methylene]-N-methoxy-undecanamide (E3330-amide), a novel uncharged derivative. E3330-amide has no effect on the melting temperature of APE1, suggesting that it does not interact with the fully folded protein. However, E3330-amide inhibits APE1’s redox activity in in vitro electrophoretic mobility shift redox and cell-based transactivation assays, producing IC50 values (8.5 and 7 μM) lower than those produced with E3330 (20 and 55 μM, respectively). Thus, E3330’s negatively charged carboxylate is not required for redox inhibition. Collectively, our results provide additional support for a mechanism of redox inhibition involving interaction of E3330 or E3330-amide with partially unfolded APE1.
  • Loading...
    Thumbnail Image
    Item
    Structural Modifications of (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione that Improve Selectivity for the Inhibition of Melanoma Cells Containing Active ERK Signaling
    (Royal Society of Chemistry, 2013) Jung, Kwan-Young; Samadani, Ramin; Chauhan, Jay; Nevels, Kerrick; Yap, Jeremy L.; Zhang, Jun; Worlikar, Shilpa; Lanning, Maryanna E.; Chen, Lijia; Ensey, Mary; Shukla, Sagar; Salmo, Rosene; Heinzl, Geoffrey; Gordon, Caryn; Dukes, Troy; MacKerell, Alexander D., Jr.; Shapiro, Paul; Fletcher, Steven; Pharmacology and Toxicology, School of Medicine
    We herein report on the pharmacophore determination of the ERK docking domain inhibitor (Z)-3-(2-aminoethyl)-5-(4-ethoxybenzylidene)thiazolidine-2,4-dione, which has led to the discovery of compounds with greater selectivities for inhibiting the proliferation of melanoma cells containing active ERK signaling.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University