- Browse by Author
Browsing by Author "Zerio, Christopher J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Allosteric differences dictate GroEL complementation of E. coli(Wiley, 2022) Sivinski, Jared; Ngo, Duc; Zerio, Christopher J.; Ambrose, Andrew J.; Watson, Edmond R.; Kaneko, Lynn K.; Kostelic, Marius M.; Stevens, Mckayla; Ray, Anne-Marie; Park, Yangshin; Wu, Chunxiang; Marty, Michael T.; Hoang, Quyen Q.; Zhang, Donna D.; Lander, Gabriel C.; Johnson, Steven M.; Chapman, Eli; Biochemistry and Molecular Biology, School of MedicineGroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.Item Functional Differences between E. coli and ESKAPE Pathogen GroES/GroEL(American Society for Microbiology, 2021-01-12) Sivinski, Jared; Ambrose, Andrew J.; Panfilenko, Iliya; Zerio, Christopher J.; Machulis, Jason M.; Mollasalehi, Niloufar; Kaneko, Lynn K.; Stevens, Mckayla; Ray, Anne-Marie; Park, Yangshin; Wu, Chunxiang; Hoang, Quyen Q.; Johnson, Steven M.; Chapmana, Eli; Biochemistry and Molecular Biology, School of MedicineAs the GroES/GroEL chaperonin system is the only bacterial chaperone that is essential under all conditions, we have been interested in the development of GroES/GroEL inhibitors as potential antibiotics. Using Escherichia coli GroES/GroEL as a surrogate, we have discovered several classes of GroES/GroEL inhibitors that show potent antibacterial activity against both Gram-positive and Gram-negative bacteria. However, it remains unknown if E. coli GroES/GroEL is functionally identical to other GroES/GroEL chaperonins and hence if our inhibitors will function against other chaperonins. Herein we report our initial efforts to characterize the GroES/GroEL chaperonins from clinically significant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). We used complementation experiments in GroES/GroEL-deficient and -null E. coli strains to report on exogenous ESKAPE chaperone function. In GroES/GroEL-deficient (but not knocked-out) E. coli, we found that only a subset of the ESKAPE GroES/GroEL chaperone systems could complement to produce a viable organism. Surprisingly, GroES/GroEL chaperone systems from two of the ESKAPE pathogens were found to complement in E. coli, but only in the strict absence of either E. coli GroEL (P. aeruginosa) or both E. coli GroES and GroEL (E. faecium). In addition, GroES/GroEL from S. aureus was unable to complement E. coli GroES/GroEL under all conditions. The resulting viable strains, in which E. coli groESL was replaced with ESKAPE groESL, demonstrated similar growth kinetics to wild-type E. coli, but displayed an elongated phenotype (potentially indicating compromised GroEL function) at some temperatures. These results suggest functional differences between GroES/GroEL chaperonins despite high conservation of amino acid identity.Item A High Throughput Substrate Binding Assay Reveals Hexachlorophene as an Inhibitor of the ER-resident HSP70 Chaperone GRP78(Elsevier, 2019-07) Ambrose, Andrew J.; Zerio, Christopher J.; Sivinski, Jared; Schmidlin, Cody J.; Shi, Taoda; Ross, Alison B.; Widrick, Kimberly J.; Johnson, Steven M.; Zhang, Donna D.; Chapman, Eli; Biochemistry and Molecular Biology, School of MedicineGlucose-regulated protein 78 (GRP78) is the ER resident 70 kDa heat shock protein 70 (HSP70) and has been hypothesized to be a therapeutic target for various forms of cancer due to its role in mitigating proteotoxic stress in the ER, its elevated expression in some cancers, and the correlation between high levels for GRP78 and a poor prognosis. Herein we report the development and use of a high throughput fluorescence polarization-based peptide binding assay as an initial step toward the discovery and development of GRP78 inhibitors. This assay was used in a pilot screen to discover the anti-infective agent, hexachlorophene, as an inhibitor of GRP78. Through biochemical characterization we show that hexachlorophene is a competitive inhibitor of the GRP78-peptide interaction. Biological investigations showed that this molecule induces the unfolded protein response, induces autophagy, and leads to apoptosis in a colon carcinoma cell model, which is known to be sensitive to GRP78 inhibition.