- Browse by Author
Browsing by Author "Zeng, Ziqian"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Effect of Chandler loop shear and tubing size on thrombus architecture(Springer, 2023-05-12) Zeng, Ziqian; Chakravarthula, Tanmaye Nallan; Christodoulides, Alexei; Hall, Abigail; Alves, Nathan J.; Emergency Medicine, School of MedicineThrombosis can lead to a wide variety of life-threatening circumstances. As current thrombolytic drug screening models often poorly predict drug profiles, leading to failure of thrombolytic therapy or clinical translation, more representative clot substrates are necessary for drug evaluation. Utilizing a Chandler loop device to form clot analogs at high shear has gained popularity in stroke societies. However, shear-dependent clot microstructure has not been fully addressed and low shear conditions are often overlooked. We herein characterized the impact of wall shear rate (126 to 951 s-1) on clot properties in the Chandler loop. Different revolutions (20-60) per minute and tubing sizes (3.2 to 7.9 mm) were employed to create different sized clots to mimic various thrombosis applications. Increased shear resulted in decreased RBC counts (76.9 ± 4.3% to 17.6 ± 0.9%) and increased fibrin (10 to 60%) based on clot histology. Increased fibrin sheet morphology and platelet aggregates were observed at higher shear under scanning electron microscope. These results show the significant impact of shear and tubing size on resulting clot properties and demonstrate the capability of forming a variety of reproducible in-vivo-like clot analogs in the Chandler loop device controlling for simple parameters to tune clot characteristics.Item Fluorescently conjugated annular fibrin clot for multiplexed real-time digestion analysis(Royal Society of Chemistry, 2021-12) Zeng, Ziqian; Nallan Chakravarthula, Tanmaye; Muralidharan, Charanya; Hall, Abigail; Linnemann, Amelia K.; Alves, Nathan J.; Emergency Medicine, School of MedicineImpaired fibrinolysis has long been considered as a risk factor for venous thromboembolism. Fibrin clots formed at physiological concentrations are promising substrates for monitoring fibrinolytic performance as they offer clot microstructures resembling in vivo. Here we introduce a fluorescently labeled fibrin clot lysis assay which leverages a unique annular clot geometry assayed using a microplate reader. A physiologically relevant fibrin clotting formulation was explored to achieve high assay sensitivity while minimizing labeling impact as fluorescence isothiocyanate (FITC)-fibrin(ogen) conjugations significantly affect both fibrin polymerization and fibrinolysis. Clot characteristics were examined using thromboelastography (TEG), turbidity, scanning electron microscopy, and confocal microscopy. Sample fibrinolytic activities at varying plasmin, plasminogen, and tissue plasminogen activator (tPA) concentrations were assessed in the present study and results were compared to an S2251 chromogenic assay. The optimized physiologically relevant clot substrate showed minimal reporter-conjugation impact with nearly physiological clot properties. The assay demonstrated good reproducibility, wide working range, kinetic read ability, low limit of detection, and the capability to distinguish fibrin binding-related lytic performance. In combination with its ease for multiplexing, it also has applications as a convenient platform for assessing patient fibrinolytic potential and screening thrombolytic drug activities in personalized medical applications.Item Multivalent Benzamidine Molecules for Plasmin Inhibition: Effect of Valency and Linker Length(Wiley, 2022) Nallan Chakravarthula, Tanmaye; Zeng, Ziqian; Alves, Nathan J.; Emergency Medicine, School of MedicineThere is an emerging interest in utilizing synthetic multivalent inhibitors that comprise of multiple inhibitor moieties linked on a common scaffold to achieve strong and selective enzyme inhibition. As multivalent inhibition is impacted by valency and linker length, in this study, we explore the effect of multivalent benzamidine inhibitors of varying valency and linker length on plasmin inhibition. Plasmin is an endogenous enzyme responsible for digesting fibrin present in blood clots. Monovalent plasmin(ogen) inhibitors are utilized clinically to treat hyperfibrinolysis‐associated bleeding events. Benzamidine is a reversible inhibitor that binds to plasmin's active site. Herein, multivalent benzamidine inhibitors of varying valencies (mono‐, bi‐ and tri‐valent) and linker lengths (∼1–12 nm) were synthesized to systematically study their effect on plasmin inhibition. Inhibition assays were performed using a plasmin substrate (S‐2251) to determine inhibition constants (Ki). Pentamidine (shortest bivalent) and Tri‐AMB (shortest trivalent) were the strongest inhibitors with Ki values of 2.1±0.8 and 3.9±1.7 μM, respectively. Overall, increasing valency and decreasing linker length, increases effective local concentration of the inhibitor and therefore, resulted in stronger inhibition of plasmin via statistical rebinding. This study aids in the design of multivalent inhibitors that can achieve desired enzyme inhibition by means of modulating valency and linker length.Item Real-time tracking of fibrinolysis under constant wall shear and various pulsatile flows in an in-vitro thrombolysis model(Wiley, 2023-04-11) Zeng, Ziqian; Christodoulides, Alexei; Alves, Nathan J.; Emergency Medicine, School of MedicineA great need exists for the development of a more representative in‐vitro model to efficiently screen novel thrombolytic therapies. We herein report the design, validation, and characterization of a highly reproducible, physiological scale, flowing clot lysis platform with real‐time fibrinolysis monitoring to screen thrombolytic drugs utilizing a fluorescein isothiocyanate (FITC)‐labeled clot analog. Using this Real‐Time Fluorometric Flowing Fibrinolysis assay (RT‐FluFF assay), a tPa‐dependent degree of thrombolysis was observed both via clot mass loss as well as fluorometrically monitored release of FITC‐labeled fibrin degradation products. Percent clot mass loss ranged from 33.6% to 85.9% with fluorescence release rates of 0.53 to 1.17 RFU/min in 40 and 1000 ng/mL tPa conditions, respectively. The platform is easily adapted to produce pulsatile flows. Hemodynamics of human main pulmonary artery were mimicked through matching dimensionless flow parameters calculated using clinical data. Increasing pressure amplitude range (4–40 mmHg) results in a 20% increase of fibrinolysis at 1000 ng/mL tPA. Increasing shear flow rate (205–913 s−1) significantly increases fibrinolysis and mechanical digestion. These findings suggest pulsatile level affects thrombolytic drug activities and the proposed in‐vitro clot model offers a versatile testing platform for thrombolytic drug screening.Item Stabilization protects islet integrity during respirometry in the Oroboros Oxygraph-2K analyzer(Taylor & Francis, 2022) Crowder, Justin J.; Zeng, Ziqian; Novak, Alissa N.; Alves, Nathan J.; Linnemann, Amelia K.; Pediatrics, School of MedicineMetabolic dysfunction of β-cells has been implicated as a contributor to diabetes pathogenesis, and efforts are ongoing to optimize analytical techniques that evaluate islet metabolism. High-resolution respirometry offers sensitive measurements of the respiratory effects of metabolic substrates and customizable manipulation of electron transport chain components, though the delicate nature of islets can pose challenges to conventional analyses. An affordable and reliable option for respirometry is the Oroboros Oxygraph-2 K system, which utilizes a stir bar to circulate reagents around cells. While this technique may be suitable for individual cells or mitochondria, the continual force exerted by the stir bar can have damaging effects on islet integrity. Herein, we demonstrate the protective benefits of a novel 3D-printed islet stabilization device and highlight the destructive effects of conventional Oxygraph analysis on islet integrity. Islet containment did not inhibit cellular responses to metabolic modulatory drugs, as indicated by robust fluctuations in oxygen consumption rates. The average size of wild-type mouse islets was significantly reduced following a standard Mito Stress Test within Oxygraph chambers, with a clear disruption in islet morphology and viability. Alternatively, containment of the islets within the interior chamber of the islet stabilization device yielded preservation of both islet morphology and increased cell viability/survival after respirometry analysis. Collectively, our study introduces a new and easily accessible tool to improve conventional Oxygraph respirometry of pancreatic islets by preserving natural islet structure and function throughout metabolic analysis.