- Browse by Author
Browsing by Author "Zawieja, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Modulation of the Tryptophan Hydroxylase 1/Monoamine Oxidase-A/5-Hydroxytryptamine/5-Hydroxytryptamine Receptor 2A/2B/2C Axis Regulates Biliary Proliferation and Liver Fibrosis During Cholestasis(Wiley, 2020-03) Kyritsi, Konstantina; Chen, Lixian; O’Brien, April; Francis, Heather; Hein, Travis W.; Venter, Julie; Wu, Nan; Ceci, Ludovica; Zhou, Tianhao; Zawieja, David; Gashev, Anatoliy A.; Meng, Fanyin; Invernizzi, Pietro; Fabris, Luca; Wu, Chaodong; Skill, Nicholas J.; Saxena, Romil; Liangpunsakul, Suthat; Alpini, Gianfranco; Glaser, Shannon S.; Medicine, School of MedicineBackground and aims: Serotonin (5HT) is a neuroendocrine hormone synthetized in the central nervous system (CNS) as well as enterochromaffin cells of the gastrointestinal tract. Tryptophan hydroxylase (TPH1) and monoamine oxidase (MAO-A) are the key enzymes for the synthesis and catabolism of 5HT, respectively. Previous studies demonstrated that 5-hydroxytryptamine receptor (5HTR)1A/1B receptor agonists inhibit biliary hyperplasia in bile-duct ligated (BDL) rats, whereas 5HTR2B receptor antagonists attenuate liver fibrosis (LF) in mice. Our aim was to evaluate the role of 5HTR2A/2B/2C agonists/antagonists in cholestatic models. Approach and results: While in vivo studies were performed in BDL rats and the multidrug resistance gene 2 knockout (Mdr2-/- ) mouse model of PSC, in vitro studies were performed in cell lines of cholangiocytes and hepatic stellate cells (HSCs). 5HTR2A/2B/2C and MAO-A/TPH1 are expressed in cholangiocytes and HSCs from BDL rats and Mdr2-/- - mice. Ductular reaction, LF, as well as the mRNA expression of proinflammatory genes increased in normal, BDL rats, and Mdr2-/- - mice following treatment 5HTR2A/2B/2C agonists, but decreased when BDL rats and Mdr2-/- mice were treated with 5HTR2A/2B/2C antagonists compared to BDL rats and Mdr2-/- mice, respectively. 5HT levels increase in Mdr2-/- mice and in PSC human patients compared to their controls and decrease in serum of Mdr2-/- mice treated with 5HTR2A/2B/2C antagonists compared to untreated Mdr2-/- mice. In vitro, cell lines of murine cholangiocytes and human HSCs express 5HTR2A/2B/2C and MAO-A/TPH1; treatment of these cell lines with 5HTR2A/2B/2C antagonists or TPH1 inhibitor decreased 5HT levels as well as expression of fibrosis and inflammation genes compared to controls. Conclusions: Modulation of the TPH1/MAO-A/5HT/5HTR2A/2B/2C axis may represent a therapeutic approach for management of cholangiopathies, including PSC.Item Targeting Lymphangiogenesis and Lymph Node Metastasis in Liver Cancer(Elsevier, 2021) Roy, Sukanya; Banerjee, Priyanka; Ekser, Burcin; Bayless, Kayla; Zawieja, David; Alpini, Gianfranco; Glaser, Shannon S.; Chakraborty, Sanjukta; Surgery, School of MedicineIncreased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are associated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly understudied in the context of liver pathology. Expansion of the lymphatic network has been documented in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lymphangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may provide future targets for therapeutic intervention. In addition, the review also addresses current mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.Item The Role of Lymphatics in Cholestasis: A Comprehensive Review(Thieme, 2020) O’Brien, April; Gasheva, Olga; Alpini, Gianfranco; Zawieja, David; Gashev, Anatoliy; Glaser, Shannon; Medicine, School of MedicineCholestatic liver disease affects millions of people worldwide and stems from a plethora of causes such as immune dysfunction, genetics, cancerous growths, and lifestyle choices. While not considered a classical lymphatic organ, the liver plays a vital role in the lymph system producing up to half of the body’s lymph per day. The lymphatic system is critical to the health of an organism with its networks of vessels that provide drainage for lymphatic fluid and routes for surveilling immune cells. Cholestasis results in an increase of inflammatory cytokines, growth factors, and inflammatory infiltrate. Left unchecked, further disease progression will include collagen deposition which impedes both the hepatic and lymphatic ducts, eventually resulting in an increase in hepatic decompensation, increasing portal pressures, and accumulation of fluid within the abdominal cavity (ascites). Despite the documented interplay between these vital systems, little is known about the effect of liver disease on the lymph system and its biological response. This review looks at the current cholestatic literature from the perspective of the lymphatic system and summarizes what is known about the role of the lymph system in liver pathogenesis during hepatic injury and remodeling, immune-modulating events, or variations in interstitial pressures.