- Browse by Author
Browsing by Author "Zaiman, Zachary"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item AI recognition of patient race in medical imaging: a modelling study(Elsevier, 2022-06) Gichoya, Judy Wawira; Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle J.; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis T.; Oakden-Rayner, Lauren; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; BioHealth Informatics, School of Informatics and ComputingBackground Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. Methods Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. Findings In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. Interpretation The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. Funding National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.Item Evaluation of federated learning variations for COVID-19 diagnosis using chest radiographs from 42 US and European hospitals(Oxford University Press, 2022) Peng, Le; Luo, Gaoxiang; Walker, Andrew; Zaiman, Zachary; Jones, Emma K.; Gupta, Hemant; Kersten, Kristopher; Burns, John L.; Harle, Christopher A.; Magoc, Tanja; Shickel, Benjamin; Steenburg, Scott D.; Loftus, Tyler; Melton, Genevieve B.; Wawira Gichoya, Judy; Sun, Ju; Tignanelli, Christopher J.; Radiology and Imaging Sciences, School of MedicineObjective: Federated learning (FL) allows multiple distributed data holders to collaboratively learn a shared model without data sharing. However, individual health system data are heterogeneous. "Personalized" FL variations have been developed to counter data heterogeneity, but few have been evaluated using real-world healthcare data. The purpose of this study is to investigate the performance of a single-site versus a 3-client federated model using a previously described Coronavirus Disease 19 (COVID-19) diagnostic model. Additionally, to investigate the effect of system heterogeneity, we evaluate the performance of 4 FL variations. Materials and methods: We leverage a FL healthcare collaborative including data from 5 international healthcare systems (US and Europe) encompassing 42 hospitals. We implemented a COVID-19 computer vision diagnosis system using the Federated Averaging (FedAvg) algorithm implemented on Clara Train SDK 4.0. To study the effect of data heterogeneity, training data was pooled from 3 systems locally and federation was simulated. We compared a centralized/pooled model, versus FedAvg, and 3 personalized FL variations (FedProx, FedBN, and FedAMP). Results: We observed comparable model performance with respect to internal validation (local model: AUROC 0.94 vs FedAvg: 0.95, P = .5) and improved model generalizability with the FedAvg model (P < .05). When investigating the effects of model heterogeneity, we observed poor performance with FedAvg on internal validation as compared to personalized FL algorithms. FedAvg did have improved generalizability compared to personalized FL algorithms. On average, FedBN had the best rank performance on internal and external validation. Conclusion: FedAvg can significantly improve the generalization of the model compared to other personalization FL algorithms; however, at the cost of poor internal validity. Personalized FL may offer an opportunity to develop both internal and externally validated algorithms.Item Reading Race: AI Recognises Patient's Racial Identity In Medical Images(arXiv, 2021) Banerjee, Imon; Bhimireddy, Ananth Reddy; Burns, John L.; Celi, Leo Anthony; Chen, Li-Ching; Correa, Ramon; Dullerud, Natalie; Ghassemi, Marzyeh; Huang, Shih-Cheng; Kuo, Po-Chih; Lungren, Matthew P.; Palmer, Lyle; Price, Brandon J.; Purkayastha, Saptarshi; Pyrros, Ayis; Oakden-Rayner, Luke; Okechukwu, Chima; Seyyed-Kalantari, Laleh; Trivedi, Hari; Wang, Ryan; Zaiman, Zachary; Zhang, Haoran; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingBackground: In medical imaging, prior studies have demonstrated disparate AI performance by race, yet there is no known correlation for race on medical imaging that would be obvious to the human expert interpreting the images. Methods: Using private and public datasets we evaluate: A) performance quantification of deep learning models to detect race from medical images, including the ability of these models to generalize to external environments and across multiple imaging modalities, B) assessment of possible confounding anatomic and phenotype population features, such as disease distribution and body habitus as predictors of race, and C) investigation into the underlying mechanism by which AI models can recognize race. Findings: Standard deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities. Our findings hold under external validation conditions, as well as when models are optimized to perform clinically motivated tasks. We demonstrate this detection is not due to trivial proxies or imaging-related surrogate covariates for race, such as underlying disease distribution. Finally, we show that performance persists over all anatomical regions and frequency spectrum of the images suggesting that mitigation efforts will be challenging and demand further study. Interpretation: We emphasize that model ability to predict self-reported race is itself not the issue of importance. However, our findings that AI can trivially predict self-reported race -- even from corrupted, cropped, and noised medical images -- in a setting where clinical experts cannot, creates an enormous risk for all model deployments in medical imaging: if an AI model secretly used its knowledge of self-reported race to misclassify all Black patients, radiologists would not be able to tell using the same data the model has access to.