- Browse by Author
Browsing by Author "Zackariya, Sufyan"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Immuno-Thrombotic Complications of COVID-19: Implications for Timing of Surgery and Anticoagulation(Frontiers Media, 2022-05-04) Bunch, Connor M.; Moore, Ernest E.; Moore, Hunter B.; Neal, Matthew D.; Thomas, Anthony V.; Zackariya, Nuha; Zhao, Jonathan; Zackariya, Sufyan; Brenner, Toby J.; Berquist, Margaret; Buckner, Hallie; Wiarda, Grant; Fulkerson, Daniel; Huff, Wei; Kwaan, Hau C.; Lankowicz, Genevieve; Laubscher, Gert J.; Lourens, Petrus J.; Pretorius, Etheresia; Kotze, Maritha J.; Moolla, Muhammad S.; Sithole, Sithembiso; Maponga, Tongai G.; Kell, Douglas B.; Fox, Mark D.; Gillespie, Laura; Khan, Rashid Z.; Mamczak, Christiaan N.; March, Robert; Macias, Rachel; Bull, Brian S.; Walsh, Mark M.; Surgery, School of MedicineEarly in the coronavirus disease 2019 (COVID-19) pandemic, global governing bodies prioritized transmissibility-based precautions and hospital capacity as the foundation for delay of elective procedures. As elective surgical volumes increased, convalescent COVID-19 patients faced increased postoperative morbidity and mortality and clinicians had limited evidence for stratifying individual risk in this population. Clear evidence now demonstrates that those recovering from COVID-19 have increased postoperative morbidity and mortality. These data-in conjunction with the recent American Society of Anesthesiologists guidelines-offer the evidence necessary to expand the early pandemic guidelines and guide the surgeon's preoperative risk assessment. Here, we argue elective surgeries should still be delayed on a personalized basis to maximize postoperative outcomes. We outline a framework for stratifying the individual COVID-19 patient's fitness for surgery based on the symptoms and severity of acute or convalescent COVID-19 illness, coagulopathy assessment, and acuity of the surgical procedure. Although the most common manifestation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19 pneumonitis, every system in the body is potentially afflicted by an endotheliitis. This endothelial derangement most often manifests as a hypercoagulable state on admission with associated occult and symptomatic venous and arterial thromboembolisms. The delicate balance between hyper and hypocoagulable states is defined by the local immune-thrombotic crosstalk that results commonly in a hemostatic derangement known as fibrinolytic shutdown. In tandem, the hemostatic derangements that occur during acute COVID-19 infection affect not only the timing of surgical procedures, but also the incidence of postoperative hemostatic complications related to COVID-19-associated coagulopathy (CAC). Traditional methods of thromboprophylaxis and treatment of thromboses after surgery require a tailored approach guided by an understanding of the pathophysiologic underpinnings of the COVID-19 patient. Likewise, a prolonged period of risk for developing hemostatic complications following hospitalization due to COVID-19 has resulted in guidelines from differing societies that recommend varying periods of delay following SARS-CoV-2 infection. In conclusion, we propose the perioperative, personalized assessment of COVID-19 patients' CAC using viscoelastic hemostatic assays and fluorescent microclot analysis.Item SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock(Frontiers Media, 2023-02-27) Bunch, Connor M.; Chang, Eric; Moore, Ernest E.; Moore, Hunter B.; Kwaan, Hau C.; Miller, Joseph B.; Al-Fadhl, Mahmoud D.; Thomas, Anthony V.; Zackariya, Nuha; Patel, Shivani S.; Zackariya, Sufyan; Haidar, Saadeddine; Patel, Bhavesh; McCurdy, Michael T.; Thomas, Scott G.; Zimmer, Donald; Fulkerson, Daniel; Kim, Paul Y.; Walsh, Matthew R.; Hake, Daniel; Kedar, Archana; Aboukhaled, Michael; Walsh, Mark M.; Graduate Medical Education, School of MedicineIrrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function—including fibrinolysis—to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states.Item Tension pneumomediastinum and diffuse subcutaneous emphysema with severe acute respiratory syndrome coronavirus 2 infection requiring operative management for impending airway collapse: A case report(Wiley, 2021-08) Lin, Kevin P.; Stefaniak, Christopher; Bunch, Connor M.; March, Robert; Zamlut, Mahmud; Raza, Syed; Osorio, Walter; Korzan, Josh; Show, Jeffery; Mjaess, Nicolas; Patel, Shivani; Zackariya, Sufyan; Sualeh, Ali; Wiarda, Grant; Al‐Fadhl, Hamid; Thomas, Anthony V.; Khan, Rashid Z.; Gillespie, Laura; Walsh, Mark M.; Medicine, School of MedicineTension pneumomediastinum is a rare complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that has increased in incidence with the novel coronavirus disease 2019 pandemic. Although traditionally managed with conservative measures, we present the indications and methods for the first operative management of tension pneumomediastinum with concomitant SARS-CoV-2 infection.