ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Závodszky, Gábor"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    OpenGraphGym: A Parallel Reinforcement Learning Framework for Graph Optimization Problems
    (Springer, 2020-06-15) Zheng, Weijian; Wang, Dali; Song, Fengguang; Krzhizhanovskaya, Valeria V.; Závodszky, Gábor; Lees, Michael H.; Dongarra, Jack J.; Sloot, Peter M. A.; Brissos, Sérgio; Teixeira, João; Computer and Information Science, School of Science
    This paper presents an open-source, parallel AI environment (named OpenGraphGym) to facilitate the application of reinforcement learning (RL) algorithms to address combinatorial graph optimization problems. This environment incorporates a basic deep reinforcement learning method, and several graph embeddings to capture graph features, it also allows users to rapidly plug in and test new RL algorithms and graph embeddings for graph optimization problems. This new open-source RL framework is targeted at achieving both high performance and high quality of the computed graph solutions. This RL framework forms the foundation of several ongoing research directions, including 1) benchmark works on different RL algorithms and embedding methods for classic graph problems; 2) advanced parallel strategies for extreme-scale graph computations, as well as 3) performance evaluation on real-world graph solutions.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University