- Browse by Author
Browsing by Author "Yue, Zongliang"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item DMAP: a connectivity map database to enable identification of novel drug repositioning candidates(BioMed Central, 2015-09-25) Huang, Hui; Nguyen, Thanh; Ibrahim, Sara; Shantharam, Sandeep; Yue, Zongliang; Chen, Jake Yue; Department of Computer & Information Science, School of ScienceBACKGROUND: Drug repositioning is a cost-efficient and time-saving process to drug development compared to traditional techniques. A systematic method to drug repositioning is to identify candidate drug's gene expression profiles on target disease models and determine how similar these profiles are to approved drugs. Databases such as the CMAP have been developed recently to help with systematic drug repositioning. METHODS: To overcome the limitation of connectivity maps on data coverage, we constructed a comprehensive in silico drug-protein connectivity map called DMAP, which contains directed drug-to-protein effects and effect scores. The drug-to-protein effect scores are compiled from all database entries between the drug and protein have been previously observed and provide a confidence measure on the quality of such drug-to-protein effects. RESULTS: In DMAP, we have compiled the direct effects between 24,121 PubChem Compound ID (CID), which were mapped from 289,571 chemical entities recognized from public literature, and 5,196 reviewed Uniprot proteins. DMAP compiles a total of 438,004 chemical-to-protein effect relationships. Compared to CMAP, DMAP shows an increase of 221 folds in the number of chemicals and 1.92 fold in the number of ATC codes. Furthermore, by overlapping DMAP chemicals with the approved drugs with known indications from the TTD database and literature, we obtained 982 drugs and 622 diseases; meanwhile, we only obtained 394 drugs with known indication from CMAP. To validate the feasibility of applying new DMAP for systematic drug repositioning, we compared the performance of DMAP and the well-known CMAP database on two popular computational techniques: drug-drug-similarity-based method with leave-one-out validation and Kolmogorov-Smirnov scoring based method. In drug-drug-similarity-based method, the drug repositioning prediction using DMAP achieved an Area-Under-Curve (AUC) score of 0.82, compared with that using CMAP, AUC = 0.64. For Kolmogorov-Smirnov scoring based method, with DMAP, we were able to retrieve several drug indications which could not be retrieved using CMAP. DMAP data can be queried using the existing C2MAP server or downloaded freely at: http://bio.informatics.iupui.edu/cmaps CONCLUSIONS: Reliable measurements of how drug affect disease-related proteins are critical to ongoing drug development in the genome medicine era. We demonstrated that DMAP can help drug development professionals assess drug-to-protein relationship data and improve chances of success for systematic drug repositioning efforts.Item Graft-Versus-Host Disease-Free Antitumoral Signature After Allogeneic Donor Lymphocyte Injection Identified by Proteomics and Systems Biology(American Society of Clinical Oncology, 2019) Liu, Xiaowen; Yue, Zongliang; Cao, Yimou; Taylor, Lauren; Zhang, Qing; Choi, Sung W.; Hanash, Samir; Ito, Sawa; Chen, Jake Yue; Wu, Huanmei; Paczesny, Sophie; Pediatrics, School of MedicinePURPOSE: As a tumor immunotherapy, allogeneic hematopoietic cell transplantation with subsequent donor lymphocyte injection (DLI) aims to induce the graft-versus-tumor (GVT) effect but often also leads to acute graft-versus-host disease (GVHD). Plasma tests that can predict the likelihood of GVT without GVHD are still needed. PATIENTS AND METHODS: We first used an intact-protein analysis system to profile the plasma proteome post-DLI of patients who experienced GVT and acute GVHD for comparison with the proteome of patients who experienced GVT without GVHD in a training set. Our novel six-step systems biology analysis involved removing common proteins and GVHD-specific proteins, creating a protein-protein interaction network, calculating relevance and penalty scores, and visualizing candidate biomarkers in gene networks. We then performed a second proteomics experiment in a validation set of patients who experienced GVT without acute GVHD after DLI for comparison with the proteome of patients before DLI. We next combined the two experiments to define a biologically relevant signature of GVT without GVHD. An independent experiment with single-cell profiling in tumor antigen-activated T cells from a patient with post-hematopoietic cell transplantation relapse was performed. RESULTS: The approach provided a list of 46 proteins in the training set, and 30 proteins in the validation set were associated with GVT without GVHD. The combination of the two experiments defined a unique 61-protein signature of GVT without GVHD. Finally, the single-cell profiling in activated T cells found 43 of the 61 genes. Novel markers, such as RPL23, ILF2, CD58, and CRTAM, were identified and could be extended to other antitumoral responses. CONCLUSION: Our multiomic analysis provides, to our knowledge, the first human plasma signature for GVT without GVHD. Risk stratification on the basis of this signature would allow for customized treatment plans.Item PAGER 2.0: an update to the pathway, annotated-list and gene-signature electronic repository for Human Network Biology(Oxford Academic, 2018-01-04) Yue, Zongliang; Zheng, Qi; Neylon, Michael T.; Yoo, Minjae; Shin, Jimin; Zhao, Zhiying; Tan, Aik Choon; Chen, Jake Yue; BioHealth Informatics, School of Informatics and ComputingIntegrative Gene-set, Network and Pathway Analysis (GNPA) is a powerful data analysis approach developed to help interpret high-throughput omics data. In PAGER 1.0, we demonstrated that researchers can gain unbiased and reproducible biological insights with the introduction of PAGs (Pathways, Annotated-lists and Gene-signatures) as the basic data representation elements. In PAGER 2.0, we improve the utility of integrative GNPA by significantly expanding the coverage of PAGs and PAG-to-PAG relationships in the database, defining a new metric to quantify PAG data qualities, and developing new software features to simplify online integrative GNPA. Specifically, we included 84 282 PAGs spanning 24 different data sources that cover human diseases, published gene-expression signatures, drug-gene, miRNA-gene interactions, pathways and tissue-specific gene expressions. We introduced a new normalized Cohesion Coefficient (nCoCo) score to assess the biological relevance of genes inside a PAG, and RP-score to rank genes and assign gene-specific weights inside a PAG. The companion web interface contains numerous features to help users query and navigate the database content. The database content can be freely downloaded and is compatible with third-party Gene Set Enrichment Analysis tools. We expect PAGER 2.0 to become a major resource in integrative GNPA. PAGER 2.0 is available at http://discovery.informatics.uab.edu/PAGER/.Item PAGER: constructing PAGs and new PAG-PAG relationships for network biology(Oxford University Press, 2015-06-15) Yue, Zongliang; Kshirsagar, Madhura M.; Nguyen, Thanh; Suphavilai, Chayaporn; Neylon, Michael T.; Zhu, Liugen; Ratliff, Timothy; Chen, Jake Yue; Department of Computer & Information Science, School of ScienceIn this article, we described a new database framework to perform integrative "gene-set, network, and pathway analysis" (GNPA). In this framework, we integrated heterogeneous data on pathways, annotated list, and gene-sets (PAGs) into a PAG electronic repository (PAGER). PAGs in the PAGER database are organized into P-type, A-type and G-type PAGs with a three-letter-code standard naming convention. The PAGER database currently compiles 44 313 genes from 5 species including human, 38 663 PAGs, 324 830 gene-gene relationships and two types of 3 174 323 PAG-PAG regulatory relationships-co-membership based and regulatory relationship based. To help users assess each PAG's biological relevance, we developed a cohesion measure called Cohesion Coefficient (CoCo), which is capable of disambiguating between biologically significant PAGs and random PAGs with an area-under-curve performance of 0.98. PAGER database was set up to help users to search and retrieve PAGs from its online web interface. PAGER enable advanced users to build PAG-PAG regulatory networks that provide complementary biological insights not found in gene set analysis or individual gene network analysis. We provide a case study using cancer functional genomics data sets to demonstrate how integrative GNPA help improve network biology data coverage and therefore biological interpretability. The PAGER database can be accessible openly at http://discovery.informatics.iupui.edu/PAGER/.Item Proteomic characterization reveals that MMP-3 correlates with bronchiolitis obliterans syndrome following allogeneic hematopoietic cell and lung transplantation(Wiley, 2016-08) Liu, Xiaowen; Yue, Zongliang; Yu, Jeffrey; Daguindau, Etienne; Kushekhar, Kushi; Zhang, Qing; Ogata, Yuko; Gafken, Philip R.; Inamoto, Yoshihiro; Gracon, Adam; Wilkes, David S.; Hansen, John A.; Lee, Stephanie J.; Chen, Jake Yue; Paczesny, Sophie; BioHealth Informatics, School of Informatics and ComputingImproved diagnostic methods are needed for bronchiolitis obliterans syndrome (BOS), a serious complication after allogeneic hematopoietic cell transplantation (HCT) and lung transplantation. For proteins candidate discovery, we compared plasma pools from HCT transplantation recipients with: BOS at onset (n=12), pulmonary infection (n=16), chronic graft-versus-host disease without pulmonary involvement (n=15), and no chronic complications post-HCT (n=15). Pools were labeled with different tags [isobaric Tags for Relative and Absolute Quantification (iTRAQ)], and two software tools identified differentially expressed proteins (≥1.5-fold change). Candidate proteins were further selected using a six-step computational biology approach. The diagnostic value of the lead candidate, matrix metalloproteinase-3 (MMP-3), was evaluated by ELISA in plasma of a verification cohort (n=112) with and without BOS following HCT (n=76) or lung transplantation (n=36). MMP-3 plasma concentrations differed significantly between patients with and without BOS (AUC=0.77). Thus, MMP-3 represents a potential non-invasive blood test for diagnosis of BOS.Item SLDR: a computational technique to identify novel genetic regulatory relationships(Springer (Biomed Central Ltd.), 2014) Yue, Zongliang; Wan, Ping; Huang, Hui; Xie, Zhan; Chen, Jake Yue; Department of BioHealth Informatics, School of Informatics and ComputingWe developed a new computational technique called Step-Level Differential Response (SLDR) to identify genetic regulatory relationships. Our technique takes advantages of functional genomics data for the same species under different perturbation conditions, therefore complementary to current popular computational techniques. It can particularly identify "rare" activation/inhibition relationship events that can be difficult to find in experimental results. In SLDR, we model each candidate target gene as being controlled by N binary-state regulators that lead to ≤2N observable states ("step-levels") for the target. We applied SLDR to the study of the GEO microarray data set GSE25644, which consists of 158 different mutant S. cerevisiae gene expressional profiles. For each target gene t, we first clustered ordered samples into various clusters, each approximating an observable step-level of t to screen out the "de-centric" target. Then, we ordered each gene x as a candidate regulator and aligned t to x for the purpose of examining the step-level correlations between low expression set of x (Ro) and high expression set of x (Rh) from the regulator x to t, by finding max f(t, x): |Ro-Rh| over all candidate × in the genome for each t. We therefore obtained activation and inhibitions events from different combinations of Ro and Rh. Furthermore, we developed criteria for filtering out less-confident regulators, estimated the number of regulators for each target t, and evaluated identified top-ranking regulator-target relationship. Our results can be cross-validated with the Yeast Fitness database. SLDR is also computationally efficient with o(N²) complexity. In summary, we believe SLDR can be applied to the mining of functional genomics big data for future network biology and network medicine applications.Item "Super Gene Set" Causal Relationship Discovery from Functional Genomics Data(IEEE, 2018-11) Yue, Zongliang; Neylon, Michael T.; Nguyen, Thanh; Ratliff, Timothy; Chen, Jake Yue; BioHealth Informatics, School of Informatics and ComputingIn this article, we present a computational framework to identify "causal relationships" among super gene sets. For "causal relationships," we refer to both stimulatory and inhibitory regulatory relationships, regardless of through direct or indirect mechanisms. For super gene sets, we refer to "pathways, annotated lists, and gene signatures," or PAGs. To identify causal relationships among PAGs, we extend the previous work on identifying PAG-to-PAG regulatory relationships by further requiring them to be significantly enriched with gene-to-gene co-expression pairs across the two PAGs involved. This is achieved by developing a quantitative metric based on PAG-to-PAG Co-expressions (PPC), which we use to infer the likelihood that PAG-to-PAG relationships under examination are causal-either stimulatory or inhibitory. Since true causal relationships are unknown, we approximate the overall performance of inferring causal relationships with the performance of recalling known r-type PAG-to-PAG relationships from causal PAG-to-PAG inference, using a functional genomics benchmark dataset from the GEO database. We report the area-under-curve (AUC) performance for both precision and recall being 0.81. By applying our framework to a myeloid-derived suppressor cells (MDSC) dataset, we further demonstrate that this framework is effective in helping build multi-scale biomolecular systems models with new insights on regulatory and causal links for downstream biological interpretations.