ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yuan, Jason X-J"

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Author Correction: Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood
    (Springer Nature, 2022-11-25) Kariotis, Sokratis; Jammeh, Emmanuel; Swietlik, Emilia M.; Pickworth, Josephine A.; Rhodes, Christopher J.; Otero, Pablo; Wharton, John; Iremonger, James; Dunning, Mark J.; Pandya, Divya; Mascarenhas, Thomas S.; Errington, Niamh; Thompson, A. A. Roger; Romanoski, Casey E.; Rischard, Franz; Garcia, Joe G. N.; Yuan, Jason X-J; Schwantes An, Tae-Hwi; Desai, Ankit A.; Coghlan, Gerry; Lordan, Jim; Corris, Paul A.; Howard, Luke S.; Condliffe, Robin; Kiely, David G.; Church, Colin; Pepke-Zaba, Joanna; Toshner, Mark; Wort, Stephen; Gräf, Stefan; Morrell, Nicholas W.; Wilkins, Martin R.; Lawrie, Allan; Wang, Dennis; UK National PAH Cohort Study Consortium; Medicine, School of Medicine
    Correction to: Nature Communications 10.1038/s41467-021-27326-0, published online 07 December 2021 The original version of this Article omitted Richard C Trembath from the UK National PAH Cohort Study consortium from Health and Life Sciences, King’s College London. This has been corrected in both the PDF and HTML versions of the Article.
  • Loading...
    Thumbnail Image
    Item
    Clinical Characteristics and Transplant-Free Survival Across the Spectrum of Pulmonary Vascular Disease
    (Elsevier, 2022) Hemnes, Anna R.; Leopold, Jane A.; Radeva, Milena K.; Beck, Gerald J.; Abidov, Aiden; Aldred, Micheala A.; Barnard, John; Rosenzweig, Erika B.; Borlaug, Barry A.; Chung, Wendy K.; Comhair, Suzy A. A.; Desai, Ankit A.; Dubrock, Hilary M.; Erzurum, Serpil C.; Finet, J. Emanuel; Frantz, Robert P.; Garcia, Joe G. N.; Geraci, Mark W.; Gray, Michael P.; Grunig, Gabriele; Hassoun, Paul M.; Highland, Kristin B.; Hill, Nicholas S.; Hu, Bo; Kwon, Deborah H.; Jacob, Miriam S.; Jellis, Christine L.; Larive, A. Brett; Lempel, Jason K.; Maron, Bradley A.; Mathai, Stephen C.; McCarthy, Kevin; Mehra, Reena; Nawabit, Rawan; Newman, John H.; Olman, Mitchell A.; Park, Margaret M.; Ramos, Jose A.; Renapurkar, Rahul D.; Rischard, Franz P.; Sherer, Susan G.; Tang, W. H. Wilson; Thomas, James D.; Vanderpool, Rebecca R.; Waxman, Aaron B.; Wilcox, Jennifer D.; Yuan, Jason X-J; Horn, Evelyn M.; PVDOMICS Study Group; Medicine, School of Medicine
    Background: PVDOMICS (Pulmonary Vascular Disease Phenomics) is a precision medicine initiative to characterize pulmonary vascular disease (PVD) using deep phenotyping. PVDOMICS tests the hypothesis that integration of clinical metrics with omic measures will enhance understanding of PVD and facilitate an updated PVD classification. Objectives: The purpose of this study was to describe clinical characteristics and transplant-free survival in the PVDOMICS cohort. Methods: Subjects with World Symposium Pulmonary Hypertension (WSPH) group 1-5 PH, disease comparators with similar underlying diseases and mild or no PH and healthy control subjects enrolled in a cross-sectional study. PH groups, comparators were compared using standard statistical tests including log-rank tests for comparing time to transplant or death. Results: A total of 1,193 subjects were included. Multiple WSPH groups were identified in 38.9% of PH subjects. Nocturnal desaturation was more frequently observed in groups 1, 3, and 4 PH vs comparators. A total of 50.2% of group 1 PH subjects had ground glass opacities on chest computed tomography. Diffusing capacity for carbon monoxide was significantly lower in groups 1-3 PH than their respective comparators. Right atrial volume index was higher in WSPH groups 1-4 than comparators. A total of 110 participants had a mean pulmonary artery pressure of 21-24 mm Hg. Transplant-free survival was poorest in group 3 PH. Conclusions: PVDOMICS enrolled subjects across the spectrum of PVD, including mild and mixed etiology PH. Novel findings include low diffusing capacity for carbon monoxide and enlarged right atrial volume index as shared features of groups 1-3 and 1-4 PH, respectively; unexpected, frequent presence of ground glass opacities on computed tomography; and sleep alterations in group 1 PH, and poorest survival in group 3 PH. PVDOMICS will facilitate a new understanding of PVD and refine the current PVD classification.
  • Loading...
    Thumbnail Image
    Item
    Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex
    (Elsevier, 2022) Rafikov, Ruslan; Rischard, Franz; Vasilyev, Mikhail; Varghese, Mathews V.; Yuan, Jason X-J; Desai, Ankit A.; Garcia, Joe G.; Rafikova, Olga; Medicine, School of Medicine
    Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.
  • Loading...
    Thumbnail Image
    Item
    Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension
    (American Physiological Society, 2021) Wang, Ziyi; Chen, Jiyuan; Babicheva, Aleksandra; Jain, Pritesh P.; Rodriguez, Marisela; Ayon, Ramon J.; Ravellette, Keeley S.; Wu, Linda; Balistrieri, Francesca; Tang, Haiyang; Wu, Xiaomin; Zhao, Tengteng; Black, Stephen M.; Desai, Ankit A.; Garcia, Joe G. N.; Sun, Xin; Shyy, John Y-J; Valdez-Jasso, Daniela; Thistlethwaite, Patricia A.; Makino, Ayako; Wang, Jian; Yuan, Jason X-J; Medicine, School of Medicine
    Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.
  • Loading...
    Thumbnail Image
    Item
    IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias
    (American Society of Hematology, 2021) Gupta, Akash; Fei, Yu-Dong; Kim, Tae Yun; Xie, An; Batai, Ken; Greener, Ian; Tang, Haiyang; Ciftci-Yilmaz, Sultan; Juneman, Elizabeth; Indik, Julia H.; Shi, Guanbin; Christensen, Jared; Gupta, Geetanjali; Hillery, Cheryl; Kansal, Mayank M.; Parikh, Devang S.; Zhou, Tong; Yuan, Jason X-J; Kanthi, Yogendra; Bronk, Peter; Koren, Gideon; Kittles, Rick; Duarte, Julio D.; Garcia, Joe G. N.; Machado, Roberto F.; Dudley, Samuel C.; Choi, Bum-Rak; Desai, Ankit A.; Medicine, School of Medicine
    Previous reports indicate that IL18 is a novel candidate gene for diastolic dysfunction in sickle cell disease (SCD)-related cardiomyopathy. We hypothesize that interleukin-18 (IL-18) mediates the development of cardiomyopathy and ventricular tachycardia (VT) in SCD. Compared with control mice, a humanized mouse model of SCD exhibited increased cardiac fibrosis, prolonged duration of action potential, higher VT inducibility in vivo, higher cardiac NF-κB phosphorylation, and higher circulating IL-18 levels, as well as reduced voltage-gated potassium channel expression, which translates to reduced transient outward potassium current (Ito) in isolated cardiomyocytes. Administering IL-18 to isolated mouse hearts resulted in VT originating from the right ventricle and further reduced Ito in SCD mouse cardiomyocytes. Sustained IL-18 inhibition via IL-18-binding protein resulted in decreased cardiac fibrosis and NF-κB phosphorylation, improved diastolic function, normalized electrical remodeling, and attenuated IL-18-mediated VT in SCD mice. Patients with SCD and either myocardial fibrosis or increased QTc displayed greater IL18 gene expression in peripheral blood mononuclear cells (PBMCs), and QTc was strongly correlated with plasma IL-18 levels. PBMC-derived IL18 gene expression was increased in patients who did not survive compared with those who did. IL-18 is a mediator of sickle cell cardiomyopathy and VT in mice and a novel therapeutic target in patients at risk for sudden death.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University