- Browse by Author
Browsing by Author "Yu, Whitney"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Experimental investigation of hot-jet ignition of methane-hydrogen mixtures in a constant-volume combustor(2016-12) Paik, Kyong-Yup; Nalim, M. Razi; Zhu, Likun; Yu, WhitneyInvestigations of a constant-volume combustor ignited by a penetrating transient jet (a puff) of hot reactive gas have been conducted in order to provide vital data for designing wave rotor combustors. In a wave rotor combustor, a cylindrical drum with an array of channels arranged around the axis spins at a high rpm to generate high-temperature and high-pressure product gas. The hot-gas jet ignition method has been employed to initiate combustion in the channels. This study aims at experimentally investigating the ignition delay time of a premixed combustible mixture in a rectangular, constant-volume chamber, representing one channel of the wave rotor drum. The ignition process may be influenced by the multiple factors: the equivalence ratio, temperature, and the composition of the fuel mixture, the temperature and composition of the jet gas, and the peak mass flow rate of the jet (which depends on diaphragm rupture pressure). In this study, the main mixture is at room temperature. The jet composition and temperature are determined by its source in a pre-chamber with a hydrogen-methane mixture with an equivalent ratio of 1.1, and a fuel mixture ratio of 50:50 (CH4:H2 by volume). The rupture pressure of a diaphragm in the pre-chamber, which is related to the mass flow rate and temperature of the hot jet, can be controlled by varying the number of indentations in the diaphragm. The main chamber composition is varied, with the use of four equivalence ratios (1.0, 0.8, 0.6, and 0.4) and two fuel mixture ratios (50:50, and 30:70 of CH4:H2 by volume). The sudden start of the jet upon rupture of the diaphragm causes a shock wave that precedes the jet and travels along the channel and back after reflection. The shock strength has an important role in fast ignition since the pressure and the temperature are increased after the shock. The reflected shock pressure was examined in order to check the variation of the shock strength. However, it is revealed that the shock strength becomes attenuated compared with the theoretical pressure of the reflected shock. The gap between theoretical and measured pressures increases with the increase of the Mach number of the initial shock. Ignition delay times are obtained using pressure records from two dynamic pressure transducers installed on the main chamber, as well as high-speed videography using flame incandescence and Schileren imaging. The ignition delay time is defined in this research as the time interval from the diaphragm rupture moment to the ignition moment of the air/fuel mixture in the main chamber. Previous researchers used the averaged ignition delay time because the diaphragm rupture moment is elusive considering the structure of the chamber. In this research, the diaphragm rupture moment is estimated based on the initial shock speed and the longitudinal length of the main chamber, and validated with the high-speed video images such that the error between the estimation time and the measured time is within 0.5%. Ignition delay times decrease with an increase in the amount of hydrogen in the fuel mixture, the amount of mass of the hot-jet gases from the pre-chamber, and with a decrease in the equivalence ratio. A Schlieren system has been established to visualize the characteristics of the shock wave, and the flame front. Schlieren photography shows the density gradient of a subject with sharp contrast, including steep density gradients, such as the flame edge and the shock wave. The flame propagation, gas oscillation, and the shock wave speed are measured using the Schlieren system. An image processing code using MATLAB has been developed for measuring the flame front movement from Schlieren images. The trend of the maximum pressure in the main chamber with respect to the equivalence ratio and the fuel mixture ratio describes that the equivalence ratio 0.8 shows the highest maximum pressure, and the fuel ratio 50:50 condition reveals lower maximum pressure in the main chamber than the 30:70 condition. After the combustion occurs, the frequency of the pressure oscillation by the traversing pressure wave increases compared to the frequency before ignition, showing a similar trend with the maximum pressure in the chamber. The frequency is the fastest at the equivalence ratio of 0.8, and the slowest at a ratio of 0.4. The fuel ratio 30:70 cases show slightly faster frequencies than 50:50 cases. Two different combustion behaviors, fast and slow combustion, are observed, and respective characteristics are discussed. The frequency of the flame front oscillation well matches with that of the pressure oscillation, and it seems that the pressure waves drive the flame fronts considering the pressure oscillation frequency is somewhat faster. Lastly, a feedback mechanism between the shock and the flame is suggested to explain the fast combustion in a constant volume chamber with the shock-flame interactions.Item Numerical simulation of combustion and unburnt products in dual-fuel compression-ignition engines with multiple injection(2015-12) Jamali, Arash; Nalim, Mohamed Razi; Yu, Whitney; Zhu, Likun; Chen, JieNatural gas substitution for diesel can result in significant reduction in pollutant emissions. Based on current fuel price projections, operating costs would be lower. With a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low reactivity natural gas and high reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in a model of the heavy-duty CAT3401 diesel engine. Dual-fuel combustion of natural gas-diesel (NGD) may provide a wider range of reactivity control than other dual-fuel combustion strategies such as gasoline-diesel dual fuel. Accurate and efficient combustion modeling can aid NGD dual-fuel engine control and optimization. In this study, multi-dimensional simulation was performed using a nite-volume computational code for fuel spray, combustion and emission processes. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. Two approaches to combustion modeling are used within the Reynolds averaged Navier-Stokes (RANS) framework. The first approach uses direct integration of the detailed chemistry and no turbulence-chemistry interaction modeling. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for NGD dual-fuel engine combustion. In addition, the role of different chemical reaction mechanism on the NGD dual-fuel combustion is considered with this model. This work considers fundamental questions regarding combustion in NGD dual-fuel combustion, particularly about how and where fuels react, and the difference between combustion in the dual fuel mode and conventional diesel mode. The results show that in part-load working condition main part of CH4 cannot burn and it has significant effect in high level of HC emission in NGD dual-fuel engine. The CFD results reveal that homogeneous mixture of CH4 and air is too lean, and it cannot ignite in regions that any species from C7H16 chemical mechanism does not exist. It is shown that multi-injection of diesel fuel with an early main injection can reduce HC emission significantly in the NGD dual-fuel engine. In addition, the results reveal that increasing the air fuel ratio by decreasing the air amount could be a promising idea for HC emission reduction in NGD dual-fuel engine, too.Item Project enhanced learning in challenging engineering courses(2012) Nalim, M. Razi; Li, Lingxi; Orono, Peter; Helfenbein, Robert; Yu, Whitney; Mital, ManuMany sophomores and juniors perform poorly in traditional lecture presentation of challenging engineering science courses, and this may present either a threat or opportunity for retention. Examples of such core ‘gateway’ courses in mechanical engineering and electrical engineering curricula include Thermodynamics, Signals and Systems, Probabilistic Methods, Statics, and Dynamics, among others. Test scores, surveys, and classroom assessments indicate that many students completing these courses did not really understand the fundamentals, even if they could apply the 'formulae’. A supplemental or alternative approach such as project-enhanced learning has been effective. The authors have implemented project experiences in three different courses, based on initial experience in a course on Thermodynamics. In Fall 2011, project-enhanced learning was introduced in two other courses: Probabilistic Methods In Electrical And Computer Engineering, and Dynamics in mechanical engineering. One or two major projects based on systems, objects, or activities that are familiar to the students are designed and assigned to apply key course topics. The goals are to motivate and improve learning of abstract concepts and to provide a realistic application that anchors and helps retain learning. Teamwork and professionalism were also emphasized. This paper will present the projects developed and the experience of the instructors in conducting the projects. Observed student reactions and learning will be discussed. Online discussion forums helped in project guidance and peer discussions. Each student team was required to submit a final project report at the end of the semester.Item Three-dimensional transient numerical study of hot-jet ignition of methane-hydrogen blends in a constant-volume combustor(2015) Khan, Md Nazmuzzaman; Nalim, Mohamed Razi; Yu, Whitney; Zhu, LikunIgnition by a jet of hot combustion product gas injected into a premixed combustible mixture from a separate pre-chamber is a complex phenomenon with jet penetration, vortex generation, flame and shock propagation and interaction. It has been considered a useful approach for lean, low-NOx combustion for automotive engines, pulsed detonation engines and wave rotor combustors. The hot-jet ignition constant-volume combustor (CVC) rig established at the Combustion and Propulsion Research Laboratory (CPRL) of the Purdue School of Engineering and Technology at Indiana University-Purdue University Indianapolis (IUPUI) is considered for numerical study. The CVC chamber contains stoichiometric methane-hydrogen blends, with pre-chamber being operated with slightly rich blends. Five operating and design parameters were investigated with respect to their eff ects on ignition timing. Di fderent pre-chamber pressure (2, 4 and 6 bar), CVC chamber fuel blends (Fuel-A: 30% methane + 70% hydrogen and Fuel-B: 50% methane + 50% hydrogen by volume), active radicals in pre-chamber combusted products (H, OH, O and NO), CVC chamber temperature (298 K and 514 K) and pre-chamber traverse speed (0.983 m/s, 4.917 m/s and 13.112 m/s) are considered which span a range of fluid-dynamic mixing and chemical time scales. Ignition delay of the fuel-air mixture in the CVC chamber is investigated using a detailed mechanism with 21 species and 84 elementary reactions (DRM19). To speed up the kinetic process adaptive mesh refi nement (AMR) based on velocity and temperature and multi-zone reaction technique is used. With 3D numerical simulations, the present work explains the e ffects of pre-chamber pressure, CVC chamber initial temperature and jet traverse speed on ignition for a speci fic set of fuels. An innovative post processing technique is developed to predict and understand the characteristics of ignition in 3D space and time. With the increase of pre-chamber pressure, ignition delay decreases for Fuel-A which is the relatively more reactive fuel blend. For Fuel-B which is relatively less reactive fuel blend, ignition occurs only for 2 bar pre-chamber pressure for centered stationary jet. Inclusion of active radicals in pre-chamber combusted product decreases the ignition delay when compared with only the stable species in pre-chamber combusted product. The eff ects of shock-flame interaction on heat release rate is observed by studying flame surface area and vorticity changes. In general, shock-flame interaction increases heat release rate by increasing mixing (increase the amount of deposited vorticity on flame surface) and flame stretching. The heat release rate is found to be maximum just after fast-slow interaction. For Fuel-A, increasing jet traverse speed decreases the ignition delay for relatively higher pre-chamber pressures (6 and 4 bar). Only 6 bar pre-chamber pressure is considered for Fuel-B with three di fferent pre-chamber traverse speeds. Fuel-B fails to ignite within the simulation time for all the traverse speeds. Higher initial CVC temperature (514 K) decreases the ignition delay for both fuels when compared with relatively lower initial CVC temperature (300 K). For initial temperature of 514 K, the ignition of Fuel-B is successful for all the pre-chamber pressures with lowest ignition delay observed for the intermediate 4 bar pre-chamber pressure. Fuel-A has the lowest ignition delay for 6 bar pre-chamber pressure. A speci fic range of pre-chamber combusted products mass fraction, CVC chamber fuel mass fraction and temperature are found at ignition point for Fuel-A which were liable for ignition initiation. The behavior of less reactive Fuel-B appears to me more complex at room temperature initial condition. No simple conclusions could be made about the range of pre-chamber and CVC chamber mass fractions at ignition point.Item Using Flow Feature to Extract Pulsatile Blood Flow from 4D Flow MRI Images(International Society for Optics and Photonics, 2017-02) Wang, Zhiqiang; Zhao, Ye; Yu, Whitney; Chen, Xi; Lin, Chen; Kralik, Stephen F.; Hutchins, Gary D.; Surgery, School of Medicine4D flow MRI images make it possible to measure pulsatile blood flow inside deforming vessel, which is critical in accurate blood flow visualization, simulation, and evaluation. Such data has great potential to overcome problems in existing work, which usually does not reflect the dynamic nature of elastic vessels and blood flows in cardiac cycles. However, the 4D flow MRI data is often low-resolution and with strong noise. Due to these challenges, few efforts have been successfully conducted to extract dynamic blood flow fields and deforming artery over cardiac cycles, especially for small artery like carotid. In this paper, a robust flow feature, particularly the mean flow intensity is used to segment blood flow regions inside vessels from 4D flow MRI images in whole cardiac cycle. To estimate this flow feature more accurately, adaptive weights are added to the raw velocity vectors based on the noise strength of MRI imaging. Then, based on this feature, target arteries are tracked in at different time steps in a cardiac cycle. This method is applied to the clinical 4D flow MRI data in neck area. Dynamic vessel walls and blood flows are effectively generated in a cardiac cycle in the relatively small carotid arteries. Good image segmentation results on 2D slices are presented, together with the visualization of 3D arteries and blood flows. Evaluation of the method was performed by clinical doctors and by checking flow volume rates in the vertebral and carotid arteries.Item Using Flow Feature to Extract Pulsatile Blood Flow from 4D Flow MRI Images(SPIE, 2017) Wang, Zhiqiang; Zhao, Ye; Yu, Whitney; Chen, Xi; Lin, Chen; Kralik, Stephen F.; Hutchins, Gary D.; Mechanical Engineering, School of Engineering and Technology4D flow MRI images make it possible to measure pulsatile blood flow inside deforming vessel, which is critical in accurate blood flow visualization, simulation, and evaluation. Such data has great potential to overcome problems in existing work, which usually does not reflect the dynamic nature of elastic vessels and blood flows in cardiac cycles. However, the 4D flow MRI data is often low-resolution and with strong noise. Due to these challenges, few efforts have been successfully conducted to extract dynamic blood flow fields and deforming artery over cardiac cycles, especially for small artery like carotid. In this paper, a robust flow feature, particularly the mean flow intensity is used to segment blood flow regions inside vessels from 4D flow MRI images in whole cardiac cycle. To estimate this flow feature more accurately, adaptive weights are added to the raw velocity vectors based on the noise strength of MRI imaging. Then, based on this feature, target arteries are tracked in at different time steps in a cardiac cycle. This method is applied to the clinical 4D flow MRI data in neck area. Dynamic vessel walls and blood flows are effectively generated in a cardiac cycle in the relatively small carotid arteries. Good image segmentation results on 2D slices are presented, together with the visualization of 3D arteries and blood flows. Evaluation of the method was performed by clinical doctors and by checking flow volume rates in the vertebral and carotid arteries.