ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yu, R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predicting Hazardous Driving Events Using Multi-Modal Deep Learning Based on Video Motion Profile and Kinematics Data
    (IEEE, 2018-11) Gao, Z.; Liu, Y.; Zheng, J. Y.; Yu, R.; Wang, X.; Sun, P.; Computer and Information Science, School of Science
    As the raising of traffic accidents caused by commercial vehicle drivers, more regulations have been issued for improving their safety status. Driving record instruments are required to be installed on such vehicles in China. The obtained naturalistic driving data offer insight into the causal factors of hazardous events with the requirements to identify where hazardous events happen within large volumes of data. In this study, we develop a model based on a low-definition driving record instrument and the vehicle kinematic data for post-accident analysis by multi-modal deep learning method. With a higher camera position on commercial vehicles than cars that can observe further distance, motion profiles are extracted from driving video to capture the trajectory features of front vehicles at different depths. Then random forest is used to select significant kinematic variables which can reflect the potential crash. Finally, a multi-modal deep convolutional neural network (DCNN) combined both video and kinematic data is developed to identify potential collision risk in each 12-second vehicle trip. The analysis results indicate that the proposed multi-modal deep learning model can identify hazardous events within a large volumes of data at an AUC of 0.81, which outperforms the state-of-the-art random forest model and kinematic threshold method.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University