- Browse by Author
Browsing by Author "Yu, Andy Qigui"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item MIR193BHG: a novel hypoxia-inducible long noncoding RNA involved in the fine-tuning of cholesterol metabolism(2016-09-22) Wu, Xue; Ivan, Mircea; Radovich, Milan; Srour, Edward F.; Yu, Andy QiguiThe human genome generates a vast number of functionally and structurally diverse noncoding transcripts, incorporated into complex networks which modulate the activity of classic pathways. Long noncoding RNAs (lncRNA) have been shown to exhibit diverse regulatory roles in various physiological and pathological processes. Hypoxia, a key feature of the tumor microenvironment, triggers adaptive responses in cancer cells that involve hundreds of genes. While the coding component of hypoxia signaling has been extensively studied, much less information is available regarding its noncoding arm. My doctoral work identified and functionally characterized a novel hypoxia-inducible lncRNAs encoded from the miR193b-host gene (MIR193BHG) locus, on chromosome 16. In the pursuit of understanding how MIR193BHG responds to hypoxia, we discovered a more complex transcriptional control of MIR193BHG by hypoxia. Ectopic expression of MIR193BHG in breast cancer cell lines in vitro and in xenografts significantly represses cell invasion, as well as the metastasis to lung and liver. Conversely, inhibition of MIR193BHG promotes cancer cell invasiveness and metastasis. RNAseq followed by pathway analysis revealed that MIR193BHG is a negative modulator of cholesterol biosynthesis pathway. MIR193BHG exerts a highly coordinated effect on the expression of cholesterol biosynthetic genes which leads to a measurable impact on the total cellular cholesterol content. The role of MIR193BHG in cholesterol metabolism also provided a mechanistic explanation for the sex maturation associated SNPs located in vicinity of this gene locus. Our work also provided preliminary insights into the functional mechanism of MIR193BHG by showing that its modulation of genes in cholesterol synthesis is predominantly at transcriptional level. Overall, my dissertation project identified a non-canonical hypoxia-inducible lncRNA, MIR193BHG, which modulates breast cancer invasion and metastasis via finetuning of cholesterol synthesis.Item Tip110 Control of HIV-1 Gene Expression and Replication(2011-08-23) Zhao, Weina; He, Johnny J.; Kaplan, Mark H.; Nakshatri, Harikrishna; Yu, Andy Qigui; Takagi, YuichiroTranscription and alternative splicing play important roles in HIV-1 gene expression and replication and mandate complicated but coordinated interactions between the host and the virus. Studies from our group have shown that a HIV-1 Tat-interacting protein of 110 kDa, Tip110 synergies with Tat in Tat-mediated HIV-1 gene transcription and replication. However, the underlying molecular mechanisms were not fully understood and are the focus of the dissertation research. In the study, we first demonstrated that Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific manner. We then showed that Tip110 was detected at the HIV-1 long terminal repeat (LTR) promoter and associated with increased phosphorylation of serine 2 within the RNAPII C-terminal domain (CTD) and increased recruitment of positive transcription elongation factor b (P-TEFb) to the LTR promoter. Consistent with these findings, we demonstrated that Tip110 interaction with Tat directly enhanced transcription elongation of the LTR promoter. During these studies, we also found that Tip110 altered HIV-1 mRNA alternative splicing and increased tat mRNA production. Subsequent analysis indicated that Tip110 selectively increased tat exons 1-2 splicing by activating HIV-1 A3 splice site but had no function in tat exons 2-3 splicing. We then showed that the preferential splicing activity of Tip110 resulted from Tip110 complex formation with hnRNP A1 protein, a negative splicing regulator that binds to the ESS2 element within tat exon 2, and as a result, blocked the complex formation of hnRNP A1 with ESS2 and subsequently activated HIV-1 A3 splice site. Taken together, these results show that Tip110 functions to regulate HIV-1 transcription elongation and HIV-1 RNA alternative splicing. These findings not only add to our understanding of Tip110 biology and function but also uncover a new potential target for development of anti-HIV intervention and therapeutic strategies.Item Vaccina Virus Binding and Infection of Primary Human B Cells(2018-12) Shepherd, Nicole Elizabeth; Yu, Andy Qigui; Androphy, Elliot J.; Blum, Janice S.; Serezani, HenriqueVaccinia virus (VACV), the prototypical poxvirus, was used to eradicate smallpox worldwide and, in recent years, has received considerable attention as a vector for the development of vaccines against infectious diseases and oncolytic virus therapy. Studies have demonstrated that VACV exhibits an extremely strong bias for binding to and infection of primary human antigenpresenting cells (APCs) including monocytes, macrophages, and dendritic cells. However, very few studies have evaluated VACV binding to and infection of primary human B cells, a main type of professional APC. In this study, we evaluated the susceptibility of primary human peripheral B cells at different developmental stages to VACV binding, infection, and replication. We found that VACV exhibited strong binding but little entry into ex vivo B cells. Phenotypic analysis of B cells revealed that plasmablasts were the only subset resistant to VACV binding. Infection studies showed that plasma and mature-naïve B cells were resistant to VACV infection, while memory B cells were preferentially infected. Additionally, VACV infection was increased in larger and proliferative B cells suggesting a bias of VACV infection towards specific stages of differentiation and proliferative ability. VACV infection in B cells was abortive, and cessation of VACV infection was determined to occur at the stage of late viral gene expression. Interestingly, B cell function, measured by cytokine production, was not affected within 24 hours post-infection. In contrast to ex vivo B cells, stimulated B cells were permissive to productive VACV infection. These results demonstrate the value of B cells as a tool to aid in deciphering the intricacies of poxvirus infection in humans. Understanding VACV infection in primary human B cells at various stages of differentiation and maturation is important for the development of a safer smallpox vaccine and better vectors for vaccines against cancers and other infectious diseases.