- Browse by Author
Browsing by Author "Young, Richard J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere(MDPI, 2024-07-12) Wilkins, Erik W.; Young, Richard J.; Houston, Daniel; Kawana, Eric; Lopez Mora, Edgar; Sunkara, Meghana S.; Riley, Zachary A.; Poston, Brach; Exercise & Kinesiology, School of Health and Human SciencesTranscranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.Item The Influence of Transcranial Alternating Current Stimulation on Fatigue Resistance(MDPI, 2023-08-21) De Guzman, Kayla A.; Young, Richard J.; Contini, Valentino; Clinton, Eliza; Hitchcock, Ashley; Riley, Zachary A.; Poston, Brach; Exercise & Kinesiology, School of Health and Human SciencesPrevious research has shown that some forms of non-invasive brain stimulation can increase fatigue resistance. The purpose of this study is to determine the influence of transcranial alternating current stimulation (tACS) on the time to task failure (TTF) of a precision grip task. The study utilized a randomized, double-blind, SHAM-controlled, within-subjects design. Twenty-six young adults completed two experimental sessions (tACS and SHAM) with a 7-day washout period between sessions. Each session involved a fatiguing isometric contraction of the right hand with a precision grip with either a tACS or SHAM stimulation applied to the primary motor cortex (M1) simultaneously. For the fatiguing contraction, the participants matched an isometric target force of 20% of the maximum voluntary contraction (MVC) force until task failure. Pre- and post-MVCs were performed to quantify the force decline due to fatigue. Accordingly, the dependent variables were the TTF and MVC force decline as well as the average EMG activity, force error, and standard deviation (SD) of force during the fatiguing contractions. The results indicate that there were no significant differences in any of the dependent variables between the tACS and SHAM conditions (p value range: 0.256–0.820). These findings suggest that tACS does not increase the TTF during fatiguing contractions in young adults.