ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yoon, Euisik"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    EGFL6 regulates the asymmetric division, maintenance and metastasis of ALDH+ ovarian cancer cells
    (American Association for Cancer Research, 2016-11-01) Bai, Shoumei; Ingram, Patrick; Chen, Yu-Chih; Deng, Ning; Pearson, Alex; Niknafs, Yashar; O'Hayer, Patrick; Wang, Yun; Zhang, Zhong-Yin; Boscolo, Elisa; Bischoff, Joyce; Yoon, Euisik; Buckanovich, Ronald J; Biochemistry and Molecular Biology, School of Medicine
    Little is known about the factors that regulate the asymmetric division of cancer stem-like cells. Here we demonstrate that EGFL6, a stem cell regulatory factor expressed in ovarian tumor cells and vasculature, regulates ALDH+ ovarian cancer stem-like cells (CSC). EGFL6 signaled at least in part via the oncoprotein SHP2 with concomitant activation of ERK. EGFL6 signaling promoted the migration and asymmetric division of ALDH+ ovarian CSC. As such, EGFL6 increased not only tumor growth but also metastasis. Silencing of EGFL6 or SHP2 limited numbers of ALDH+ cells and reduced tumor growth, supporting a critical role for EGFL6/SHP2 in ALDH+ cell maintenance. Notably, systemic administration of an EGFL6-neutralizing antibody we generated restricted tumor growth and metastasis, specifically blocking ovarian cancer cell recruitment to the ovary. Together, our results offer a preclinical proof of concept for EGFL6 as a novel therapeutic target for the treatment of ovarian cancer.
  • Loading...
    Thumbnail Image
    Item
    A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells
    (Elsevier, 2019-03-12) Chefetz, Ilana; Grimley, Edward; Yang, Kun; Hong, Linda; Vinogradova, Ekaterina V.; Suciu, Radu; Kovalenko, Ilya; Karnak, David; Morgan, Cynthia A.; Chtcherbinine, Mikhail; Buchman, Cameron; Huddle, Brandt; Barraza, Scott; Morgan, Meredith; Bernstein, Kara A.; Yoon, Euisik; Lombard, David B.; Bild, Andrea; Mehta, Geeta; Romero, Iris; Chiang, Chun-Yi; Landen, Charles; Cravatt, Benjamin; Hurley, Thomas D.; Larsen, Scott D.; Buckanovich, Ronald J.; Department of Biochemistry and Molecular Biology, School of Medicine
    Summary Ovarian cancer is typified by the development of chemotherapy resistance. Chemotherapy resistance is associated with high aldehyde dehydrogenase (ALDH) enzymatic activity, increased cancer “stemness,” and expression of the stem cell marker CD133. As such, ALDH activity has been proposed as a therapeutic target. Although it remains controversial which of the 19 ALDH family members drive chemotherapy resistance, ALDH1A family members have been primarily linked with chemotherapy resistant and stemness. We identified two ALDH1A family selective inhibitors (ALDH1Ai). ALDH1Ai preferentially kills CD133+ ovarian cancer stem-like cells (CSCs). ALDH1Ai induce necroptotic CSC death, mediated, in part, by the induction of mitochondrial uncoupling proteins and reduction in oxidative phosphorylation. ALDH1Ai is highly synergistic with chemotherapy, reducing tumor initiation capacity and increasing tumor eradication in vivo. These studies link ALDH1A with necroptosis and confirm the family as a critical therapeutic target to overcome chemotherapy resistance and improve patient outcomes.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University