ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yong, Kwee L."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Myeloma Genome Project Panel is a Comprehensive Targeted Genomics Panel for Molecular Profiling of Patients with Multiple Myeloma
    (American Association for Cancer Research, 2022) Sudha, Parvathi; Ahsan, Aarif; Ashby, Cody; Kausar, Tasneem; Khera, Akhil; Kazeroun, Mohammad H.; Hsu, Chih-Chao; Wang, Lin; Fitzsimons, Evelyn; Salminen, Outi; Blaney, Patrick; Czader, Magdalena; Williams, Jonathan; Zaid, Mohammad I. Abu; Ansari-Pour, Naser; Yong, Kwee L.; van Rhee, Frits; Pierceall, William E.; Morgan, Gareth J.; Flynt, Erin; Gooding, Sarah; Abonour, Rafat; Ramasamy, Karthik; Thakurta, Anjan; Walker, Brian A.; Medicine, School of Medicine
    Purpose: We designed a comprehensive multiple myeloma targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. Experimental design: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNA). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical FISH (translocations), multiplex ligation probe analysis (MLPA; CNAs), whole-genome sequencing (WGS; CNAs, mutations, translocations), or droplet digital PCR (ddPCR) of known standards (mutations). Results: Canonical immunoglobulin heavy chain translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for 1 patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2 = 0.969. Variant allele frequency (VAF) for 74 mutations were compared between sequencing and ddPCR with concordance of R2 = 0.9849. Conclusions: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost-effective, comprehensive, clinically actionable, and can be routinely deployed to assist risk stratification at diagnosis or posttreatment to guide sequencing of therapies.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University