- Browse by Author
Browsing by Author "Yoder, Karmen K."
Now showing 1 - 10 of 34
Results Per Page
Sort Options
Item [(11)C]PiB PET in Gerstmann-Sträussler-Scheinker disease(e-Century Publishing Corporation, 2016) Deters, Kacie D.; Risacher, Shannon L.; Yoder, Karmen K.; Oblak, Adrian L.; Unverzagt, Frederick W.; Murrell, Jill R.; Epperson, Francine; Tallman, Eileen F.; Quaid, Kimberly A.; Farlow, Martin R.; Saykin, Andrew J.; Ghetti, Bernardino; Department of Pathology & Laboratory Medicine, IU School of MedicineGerstmann-Sträussler-Scheinker Disease (GSS) is a familial neurodegenerative disorder characterized clinically by ataxia, parkinsonism, and dementia, and neuropathologically by deposition of diffuse and amyloid plaques composed of prion protein (PrP). The purpose of this study was to evaluate if [(11)C]Pittsburgh Compound B (PiB) positron emission tomography (PET) is capable of detecting PrP-amyloid in PRNP gene carriers. Six individuals at risk for GSS and eight controls underwent [(11)C]PiB PET scans using standard methods. Approximately one year after the initial scan, each of the three asymptomatic carriers (two with PRNP P102L mutation, one with PRNP F198S mutation) underwent a second [(11)C]PiB PET scan. Three P102L carriers, one F198S carrier, and one non-carrier of the F198S mutation were cognitively normal, while one F198S carrier was cognitively impaired during the course of this study. No [(11)C]PiB uptake was observed in any subject at baseline or at follow-up. Neuropathologic study of the symptomatic individual revealed PrP-immunopositive plaques and tau-immunopositive neurofibrillary tangles in cerebral cortex, subcortical nuclei, and brainstem. PrP deposits were also numerous in the cerebellar cortex. This is the first study to investigate the ability of [(11)C]PiB PET to bind to PrP-amyloid in GSS F198S subjects. This finding suggests that [(11)C]PiB PET is not suitable for in vivo assessment of PrP-amyloid plaques in patients with GSS.Item Aberrations of anterior insular cortex functional connectivity in nontreatment-seeking alcoholics(Elsevier, 2019-02) Halcomb, Meredith E.; Chumin, Evgeny J.; Goñi, Joaquín; Dzemidzic, Mario; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineAn emergent literature suggests that resting state functional magnetic resonance imaging (rsfMRI) functional connectivity (FC) patterns are aberrant in alcohol use disorder (AUD) populations. The salience network (SAL) is an established set of brain regions prominent in salience attribution and valuation, and includes the anterior insular cortex (AIC). The SAL is thought to play a role in AUD through directing increased attention to interoceptive cues of intoxication. There is very little information on the salience network (SAL) in AUD, and, in particular, there are no data on SAL FC in currently drinking, nontreatment seeking individuals with AUD (NTS). rsfMRI data from 16 NTS and 21 social drinkers (SD) were compared using FC correlation maps from ten seed regions of interest in the bilateral AIC. As anticipated, SD subjects demonstrated greater insular FC with frontal and parietal regions. We also found that, compared to SD, NTS had higher insular FC with hippocampal and medial orbitofrontal regions. The apparent overactivity in brain networks involved in salience, learning, and behavioral control in NTS suggests possible mechanisms in the development and maintenance of AUD.Item Alterations in White Matter Microstructure and Connectivity in Young Adults with Alcohol Use Disorder(Wiley, 2019) Chumin, Evgeny J.; Grecco, Gregory G.; Dzemidzic, Mario; Cheng, Hu; Finn, Peter; Sporns, Olaf; Newman, Sharlene D.; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineBackground Magnetic resonance imaging (MRI) studies have shown differences in volume and structure in the brains of individuals with alcohol use disorder (AUD). Most research has focused on neuropathological effects of alcohol that appear after years of chronic alcohol misuse. However, few studies have investigated white matter (WM) microstructure and diffusion MRI‐based (DWI) connectivity during early stages of AUD. Therefore, the goal of this work was to investigate WM integrity and structural connectivity in emerging adulthood AUD subjects using both conventional DWI metrics and a novel connectomics approach. Methods Twenty‐two AUD and eighteen controls (CON) underwent anatomical and diffusion MRI. Outcome measures were scalar diffusion metrics and structural network connectomes. Tract Based Spatial Statistics was used to investigate group differences in diffusion measures. Structural connectomes were used as input into a community structure procedure to obtain a co‐classification index matrix (an indicator of community association strength) for each subject. Differences in co‐classification and structural connectivity (indexed by streamline density) were assessed via the Network Based Statistics Toolbox. Results AUD had higher FA values throughout the major WM tracts, but also had lower FA values in WM tracts in the cerebellum and right insula (pTFCE < 0.05). Mean diffusivity was generally lower in the AUD group (pTFCE < 0.05). AUD had lower co‐classification of nodes between ventral attention and default mode networks, and higher co‐classification between nodes of visual, default mode, and somatomotor networks. Additionally, AUD had higher fiber density between an adjacent pair of nodes within the default mode network. Conclusion Our results indicate that emerging adulthood AUD subjects may have differential patterns of FA and distinct differences in structural connectomes compared to CON. These data suggest that such alterations in microstructure and structural connectivity may uniquely characterize early stages of AUD and/or a predisposition for development of AUD.Item Amyloid and Tau Pathology are Associated with Cerebral Blood Flow in a Mixed Sample of Nondemented Older Adults with and without Vascular Risk Factors for Alzheimer’s Disease(Elsevier, 2023) Swinford, Cecily G.; Risacher, Shannon L.; Vosmeier, Aaron; Deardorff, Rachael; Chumin, Evgeny J.; Dzemidzic, Mario; Wu, Yu-Chien; Gao, Sujuan; McDonald, Brenna C.; Yoder, Karmen K.; Unverzagt, Frederick W.; Wang, Sophia; Farlow, Martin R.; Brosch, Jared R.; Clark, David G.; Apostolova, Liana G.; Sims, Justin; Wang, Danny J.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineIdentification of biomarkers for the early stages of Alzheimer's disease (AD) is an imperative step in developing effective treatments. Cerebral blood flow (CBF) is a potential early biomarker for AD; generally, older adults with AD have decreased CBF compared to normally aging peers. CBF deviates as the disease process and symptoms progress. However, further characterization of the relationships between CBF and AD risk factors and pathologies is still needed. We assessed the relationships between CBF quantified by arterial spin-labeled magnetic resonance imaging, hypertension, APOEε4, and tau and amyloid positron emission tomography in 77 older adults: cognitively normal, subjective cognitive decline, and mild cognitive impairment. Tau and amyloid aggregation were related to altered CBF, and some of these relationships were dependent on hypertension or APOEε4 status. Our findings suggest a complex relationship between risk factors, AD pathologies, and CBF that warrants future studies of CBF as a potential early biomarker for AD.Item Anterior Cingulate Cortex Metabolites and White Matter Microstructure: A Multimodal Study of Emergent Alcohol Use Disorder(Springer, 2021) Grecco, Gregory G.; Chumin, Evgeny J.; Dzemidzic, Mario; Cheng, Hu; Finn, Peter; Newman, Sharlene; Dydak, Ulrike; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineMultimodal imaging is increasingly used to address neuropathology associated with alcohol use disorder (AUD). Few studies have investigated relationships between metabolite concentrations and white matter (WM) integrity; currently, there are no such data in AUD. In this preliminary study, we used complementary neuroimaging techniques, magnetic resonance spectroscopy (MRS), and diffusion weighted imaging (DWI), to study AUD neurophysiology. We tested for relationships between metabolites in the dorsal anterior cingulate cortex (dACC) and adjacent WM microstructure in young adult AUD and control (CON) subjects. Sixteen AUD and fourteen CON underwent whole-brain DWI and MRS of the dACC. Outcomes were dACC metabolites, and diffusion tensor metrics of dACC-adjacent WM. Multiple linear regression terms included WM region, group, and region × group for prediction of dACC metabolites. dACC myo-inositol was positively correlated with axial diffusivity in the left anterior corona radiata (p < 0.0001) in CON but not AUD (group effect: p < 0.001; region × group: p < 0.001; Bonferroni-corrected). In the bilateral anterior corona radiata and right genu of the corpus callosum, glutamate was negatively related to mean diffusivity in AUD, but not CON subjects (all model terms: p < 0.05, uncorrected). In AUD subjects, dACC glutamate was negatively correlated with AUD symptom severity. This is likely the first integrative study of cortical metabolites and WM integrity in young individuals with AUD. Differential relationships between dACC metabolites and adjacent WM tract integrity in AUD could represent early consequences of hazardous drinking, and/or novel biomarkers of early-stage AUD. Additional studies are required to replicate these findings, and to determine the behavioral relevance of these results.Item Assessment of the dopamine system in addiction using positron emission tomography(2014) Albrecht, Daniel Strakis; Hutchins, Gary D.; Saykin, Andrew J.; Kareken, David A.; Yoder, Karmen K.; Grahame, Nicholas J.Drug addiction is a behavioral disorder characterized by impulsive behavior and continued intake of drug in the face of adverse consequences. Millions of people suffer the financial and social consequences of addiction, and yet many of the current therapies for addiction treatment have limited efficacy. Therefore, there is a critical need to characterize the neurobiological substrates of addiction in order to formulate better treatment options. In the first chapter, the striatal dopamine system is interrogated with [11C]raclopride PET to assess differences between chronic cannabis users and healthy controls. The results of this chapter indicate that chronic cannabis use is not associated with a reduction in striatal D2/D3 receptor availability, unlike many other drugs of abuse. Additionally, recent cannabis consumption in chronic users was negatively correlated with D2/D3 receptor availability. Chapter 2 describes a retrospective analysis in which striatal D2/D3 receptor availability is compared between three groups of alcohol-drinking and tobacco-smoking subjects: nontreatment-seeking alcoholic smokers, social-drinking smokers, and social-drinking non-smokers. Results showed that smokers had reduced D2/D3 receptor availability throughout the striatum, independent of drinking status. The results of the first two chapters suggest that some combustion product of marijuana and tobacco smoke may have an effect on striatal dopamine concentration. Furthermore, they serve to highlight the effectiveness of using baseline PET imaging to characterize dopamine dysfunction in addictions. The final chapter explores the use of [18F]fallypride PET in a proof-of-concept study to determine whether changes in cortical dopamine can be detected during a response inhibition task. We were able to detect several cortical regions of significant dopamine changes in response to the task, and the amount of change in three regions was significantly associated with task performance. Overall, the results of Chapter 3 validate the use of [18F]fallypride PET to detect cortical dopamine changes during a impulse control task. In summary, the results reported in the current document demonstrate the effectiveness of PET imaging as a tool for probing resting and activated dopamine systems in addiction. Future studies will expand on these results, and incorporate additional methods to further elucidate the neurobiology of addiction.Item Association of plasma and cortical beta-amyloid is modulated by APOE ε4 status.(Elsevier, 2014-01) Swaminathan, Shanker; Risacher, Shannon L.; Yoder, Karmen K.; West, John D.; Shen, Li; Kim, Sungeun; Inlow, Mark; Foroud, Tatiana; Jagust, William J.; Koeppe, Robert A.; Mathis, Chester A.; Shaw, Leslie M.; Trojanowski, John Q.; Soares, Holly; Aisen, Paul S.; Petersen, Ronald C.; Weiner, Michael W.; Saykin, Andrew J.; Department of Radiology and Imaging Sciences, IU School of MedicineBackground: APOE ε4’s role as a modulator of the relationship between soluble plasma beta-amyloid (Aβ) and fibrillar brain Aβ measured by Pittsburgh Compound-B positron emission tomography ([11C]PiB PET) has not been assessed. Methods: Ninety-six Alzheimer’s Disease Neuroimaging Initiative participants with [11C]PiB scans and plasma Aβ1-40 and Aβ1-42 measurements at time of scan were included. Regional and voxel-wise analyses of [11C]PiB data were used to determine the influence of APOE ε4 on association of plasma Aβ1-40, Aβ1-42, and Aβ1-40/Aβ1-42 with [11C]PiB uptake. Results: In APOE ε4− but not ε4+ participants, positive relationships between plasma Aβ1-40/Aβ1-42 and [11C]PiB uptake were observed. Modeling the interaction of APOE and plasma Aβ1-40/Aβ1-42 improved the explained variance in [11C]PiB binding compared to using APOE and plasma Aβ1-40/Aβ1-42 as separate terms. Conclusions: The results suggest that plasma Aβ is a potential Alzheimer’s disease biomarker and highlight the importance of genetic variation in interpretation of plasma Aβ levels.Item Brain Responses to Sugar: Implications for Alcohol Use Disorder and Obesity(2024-05) Alessi, Jonathan P.; Yoder, Karmen K.; Kareken, David A.; Džemidžić, Mario; Considine, Robert V.; Harezlak, JaroslawObesity and alcohol use may together account for 640,000 adult deaths each year in the United States. In both cases, overconsumption drives untoward effects. Alcohol use and obesity also both relate to sweet liking, as sugar consumption is consistently linked to weight gain and intense sweet liking has been linked to an inherited risk for alcohol use disorder (AUD). However, the neural underpinnings of these associations are largely unknown. Thus, we used sugar-sweetened water administration during functional magnetic resonance imaging (fMRI) to probe these relationships in two studies. In the first, we tested the relationship between a known AUD risk factor, subjective response to alcohol, and the brain response to both sucrose and monetary reward in 140 young adults. We found a significant positive correlation between the enjoyable component of subjective responses to a standardized intravenous alcohol exposure and activation to high-concentration sucrose (but not monetary reward) in the right dorsal anterior insula and the supplementary motor area, supporting a role for these regions in AUD risk. In the second study, we investigated the neural mechanisms of sweet liking decreases following bariatric surgery, the most effective obesity treatment. Here, we evaluated the change in brain activation to sucrose in 24 women before (BMI 47.0 + 6.9 kg/m2) and 21 women after (BMI 37.6 + 6.5 kg/m2) bariatric surgery and compared the pre- and post-surgical activation patterns to those of 21 normal to overweight (BMI 23.5 + 2.5 kg/m2) control participants. Brain activation did not differ between controls and surgery participants at either time point. However, activation to sucrose in reward, but not sensory, regions decreased significantly after surgery, consistent with reduced drive to consume sweet foods. Together, these studies highlight the utility of quantifying brain responses to sweet taste as a method to understand the mechanisms underlying overconsumptive behavior.Item The Brain: Is it a Next Frontier to Better Understand the Regulation and Control of Hematopoiesis for Future Modulation and Treatment?(Springer, 2021-08) Broxmeyer, Hal E.; Yoder, Karmen K.; Wu, Yu-Chien; Hutchins, Gary D.; Cooper, Scott H.; Farag, Sherif S.; Microbiology and Immunology, School of MedicineWe wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.Item Cerebral Blood Flow in the Salience Network of Individuals with Alcohol Use Disorder(Oxford University Press, 2022) Butcher, Tarah J.; Chumin, Evgeny J.; West, John D.; Dzemidzic, Mario; Yoder, Karmen K.; Radiology and Imaging Sciences, School of MedicineAims: Magnetic resonance imaging (MRI) studies have identified structural and functional differences in salience network nodes of individuals with alcohol use disorders (AUDs) after chronic exposure to alcohol. However, no studies have investigated cerebral blood flow (CBF) in nontreatment-seeking (NTS) individuals with AUD. Methods: In this work, we sought to quantify putative CBF deficits in NTS individuals relative to social drinking (SD) controls and determine if CBF in the salience network is associated with AUD severity. Fifteen NTS (36.5 ± 11.2 years old, 30.0 ± 22.7 drinks/week) and 22 SD (35.6 ± 11.9 years old, 9.1 ± 5.7 drinks/week) underwent pseudocontinuous arterial spin labeling MRI. Results: Compared with social drinkers, NTS individuals had significantly lower CBF in the right and left dorsal anterior insula, and the left ventral anterior and posterior insula. The Alcohol Use Disorder Identification Test (AUDIT) score showed a significant negative relationship with CBF in the bilateral caudal anterior cingulate cortex. In addition, a significant negative correlation was present between number of standard drinks consumed per week and the left frontal opercular CBF. Conclusion: These results provide evidence that insular CBF is negatively associated with heavy drinking, and that severity of alcohol use is related to CBF deficits in key nodes of the salience network. Longitudinal data are needed to understand if disruptions of CBF in the insula and the salience network are a predisposition for or a consequence of chronic AUD.