- Browse by Author
Browsing by Author "Yilmaz, Sezai"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Current Barriers to Clinical Liver Xenotransplantation(Frontiers Media, 2022-02-23) Cross-Najafi, Arthur A.; Lopez, Kevin; Isidan, Abdulkadir; Park, Yujin; Zhang, Wenjun; Li, Ping; Yilmaz, Sezai; Akbulut, Sami; Ekser, Burcin; Surgery, School of MedicinePreclinical trials of pig-to-nonhuman primate liver xenotransplantation have recently achieved longer survival times. However, life-threatening thrombocytopenia and coagulation dysregulation continue to limit preclinical liver xenograft survival times to less than one month despite various genetic modifications in pigs and intensive pharmacological support. Transfusion of human coagulation factors and complex immunosuppressive regimens have resulted in substantial improvements in recipient survival. The fundamental biological mechanisms of thrombocytopenia and coagulation dysregulation remain incompletely understood. Current studies demonstrate that porcine von Willebrand Factor binds more tightly to human platelet GPIb receptors due to increased O-linked glycosylation, resulting in increased human platelet activation. Porcine liver sinusoidal endothelial cells and Kupffer cells phagocytose human platelets in an asialoglycoprotein receptor 1-dependent and CD40/CD154-dependent manner, respectively. Porcine Kupffer cells phagocytose human platelets via a species-incompatible SIRPα/CD47 axis. Key drivers of coagulation dysregulation include constitutive activation of the extrinsic clotting cascade due to failure of porcine tissue factor pathway inhibitor to repress recipient tissue factor. Additionally, porcine thrombomodulin fails to activate human protein C when bound by human thrombin, leading to a hypercoagulable state. Combined genetic modification of these key genes may mitigate liver xenotransplantation-induced thrombocytopenia and coagulation dysregulation, leading to greater recipient survival in pig-to-nonhuman primate liver xenotransplantation and, potentially, the first pig-to-human clinical trial.Item Differences in platelet aggregometers to study platelet function and coagulation dysregulation in xenotransplantation(Wiley, 2021-01) Isidan, Abdulkadir; Chen, Angela M.; Saglam, Kutay; Yilmaz, Sezai; Zhang, Wenjun; Li, Ping; Ekser, Burcin; Surgery, School of MedicineXenotransplantation (ie, cross-species transplantation) using genetically engineered pig organs could be a limitless source to solve the shortage of organs and tissues worldwide. However, despite prolonged survival in preclinical pig-to-nonhuman primate xenotransplantation trials, interspecies coagulation dysregulation remains to be overcome in order to achieve continuous long-term success. Different platelet aggregometry methods have been previously used to study the coagulation dysregulation with wild-type and genetically engineered pig cells, including the impact of possible treatment options. Among these methods, while thromboelastography and rotational thromboelastometry measure the change in viscoelasticity, optical aggregometry measures the change in opacity. Recently, impedance aggregometry has been used to measure changes in platelet aggregation in electrical conductance, providing more information to our understanding of coagulation dysregulation in xenotransplantation compared to previous methods. The present study reviews the merits and differences of the above-mentioned platelet aggregometers in xenotransplantation research.