- Browse by Author
Browsing by Author "Yen, Jui-Hung"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke(Frontiers, 2022-07) Weng, Wen-Tsan; Kuo, Ping-Chang; Scofield, Barbara A.; Paraiso, Hallel C.; Brown, Dennis A.; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineIschemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood–brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/– and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.Item 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke(Frontiers Media, 2022-07-01) Weng, Wen-Tsan; Kuo, Ping-Chang; Scofield, Barbara A.; Paraiso, Hallel C.; Brown, Dennis A.; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineIschemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood-brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2-/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2-/- and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.Item 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis(BMC, 2021-05-11) Weng, Wen-Tsan; Kuo, Ping-Chang; Brown, Dennis A.; Scofield, Barbara A.; Furnas, Destin; Paraiso, Hallel C.; Wang, Pei-Yu; Yu, I-Chen; Yen, Jui-Hung; Anatomy and Cell Biology, School of MedicineBackground: Multiple sclerosis (MS) is a progressive autoimmune disease characterized by the accumulation of pathogenic inflammatory immune cells in the central nervous system (CNS) that subsequently causes focal inflammation, demyelination, axonal injury, and neuronal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model that mimics the key features of MS. Presently, the dietary consumption of foods rich in phenols has been reported to offer numerous health benefits, including anti-inflammatory activity. One such compound, 4-ethylguaiacol (4-EG), found in various foods, is known to attenuate inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects on modulating the CNS inflammatory immune responses remains unknown. Thus, in this study, we assessed the therapeutic effect of 4-EG in EAE using both chronic and relapsing-remitting animal models and investigated the immunomodulatory effects of 4-EG on neuroinflammation and Th1/Th17 differentiation in EAE. Methods: Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced followed by 4-EG treatment. The effects of 4-EG on disease progression, peripheral Th1/Th17 differentiation, CNS Th1/Th17 infiltration, microglia (MG) activation, and blood-brain barrier (BBB) disruption in EAE were evaluated. In addition, the expression of MMP9, MMP3, HO-1, and Nrf2 was assessed in the CNS of C57BL/6 EAE mice. Results: Our results showed that 4-EG not only ameliorated disease severity in C57BL/6 chronic EAE but also mitigated disease progression in SJL/J relapsing-remitting EAE. Further investigations of the cellular and molecular mechanisms revealed that 4-EG suppressed MG activation, mitigated BBB disruption, repressed MMP3/MMP9 production, and inhibited Th1 and Th17 infiltration in the CNS of EAE. Furthermore, 4-EG suppressed Th1 and Th17 differentiation in the periphery of EAE and in vitro Th1 and Th17 cultures. Finally, we found 4-EG induced HO-1 expression in the CNS of EAE in vivo as well as in MG, BV2 cells, and macrophages in vitro. Conclusions: Our work demonstrates that 4-EG confers protection against autoimmune disease EAE through modulating neuroinflammation and inhibiting Th1 and Th17 differentiation, suggesting 4-EG, a natural compound, could be potentially developed as a therapeutic agent for the treatment of MS/EAE.Item Adipose-derived stromal cells reverse insulin resistance through inhibition of M1 expression in a type 2 diabetes mellitus mouse model(BMC, 2022-07) Chen, Lee-Wei; Chen, Pei-Hsuan; Tang, Chia-Hua; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineBackground Adipose tissue inflammation is considered as one of the major mechanisms underlying the pathogenesis of insulin resistance and complications in diabetes. Here, we aimed to study the effects of adipose-derived stromal cells on diabetes-induced insulin resistance and M1 cytokine expression. Methods Stromal vascular fractions (SVFs) purified from the inguinal adipose tissue of diabetic mice were treated with plasma from either nondiabetic (Lepr+/+) or diabetic (Leprdb/db) mice and injected into the inguinal white adipose tissue of Leprdb/db mice. Results We found that diabetic plasma treatment induced, whereas nondiabetic plasma suppressed TNF-α, IL-1β, and dipeptidyl peptidase 4 (DPP4) mRNA expression in SVFs in vitro. Importantly, the injection of nondiabetic plasma-treated SVFs significantly decreased TNF-α, IL-6, IL-1β, CCL2, and IL-33 and induced IL-10 mRNA expression in adipose tissue of Leprdb/db mice in vivo. Furthermore, we observed that nondiabetic plasma-treated SVFs increased mRNA expression of Foxp3 in adipose tissue macrophages and Foxp3 in adipose CD4+ T cells, decreased CD11b+CD11c+ cells in adipose tissue, and suppressed mRNA expression of ICAM-1, FCM3, IL-6, IL-1β, iNOS, TNF-α, and DPP4 as well as protein expression of DPP4 and phosphorylated JNK and NF-κB in the liver of Leprdb/db mice. Moreover, we found that nondiabetic plasma-treated SVFs increased Akt activation following insulin administration and attenuated glucose intolerance in Leprdb/db mice. Conclusions Our results demonstrate that nondiabetic plasma inhibits M1 but increases M2 cytokine expression in adipose tissue of diabetic mice. Most importantly, our findings reveal that nondiabetic plasma-treated SVFs are capable of mitigating diabetes-induced plasma DPP4 activity, liver inflammation, and insulin resistance and that may be mediated through suppressing M1 cytokines but increasing IL-10 and Tregs in adipose tissue. Altogether, our findings suggest that adipose stromal cell-based therapy could potentially be developed as an efficient therapeutic strategy for the treatment of diabetes.Item Dimethyl fumarate attenuates reactive microglia and long-term memory deficits following systemic immune challenge(BioMed Central, 2018-03-29) Paraiso, Hallel C.; Kuo, Ping-Chang; Curfman, Eric T.; Moon, Haley J.; Sweazey, Robert D.; Yen, Jui-Hung; Chang, Fen-Lei; Yu, I-Chen; Biology, School of ScienceBACKGROUND: Systemic inflammation is associated with increased cognitive decline and risk for Alzheimer's disease. Microglia (MG) activated during systemic inflammation can cause exaggerated neuroinflammatory responses and trigger progressive neurodegeneration. Dimethyl fumarate (DMF) is a FDA-approved therapy for multiple sclerosis. The immunomodulatory and anti-oxidant properties of DMF prompted us to investigate whether DMF has translational potential for the treatment of cognitive impairment associated with systemic inflammation. METHODS: Primary murine MG cultures were stimulated with lipopolysaccharide (LPS) in the absence or presence of DMF. MG cultured from nuclear factor (erythroid-derived 2)-like 2-deficient (Nrf2 -/- ) mice were used to examine mechanisms of DMF actions. Conditioned media generated from LPS-primed MG were used to treat hippocampal neuron cultures. Adult C57BL/6 and Nrf2 -/- mice were subjected to peripheral LPS challenge. Acute neuroinflammation, long-term memory function, and reactive astrogliosis were examined to assess therapeutic effects of DMF. RESULTS: DMF suppressed inflammatory activation of MG induced by LPS. DMF suppressed NF-κB activity through Nrf2-depedent and Nrf2-independent mechanisms in MG. DMF treatment reduced MG-mediated toxicity towards neurons. DMF suppressed brain-derived inflammatory cytokines in mice following peripheral LPS challenge. The suppressive effect of DMF on neuroinflammation was blunted in Nrf2 -/- mice. Importantly, DMF treatment alleviated long-term memory deficits and sustained reactive astrogliosis induced by peripheral LPS challenge. DMF might mitigate neurotoxic astrocytes associated with neuroinflammation. CONCLUSIONS: DMF treatment might protect neurons against toxic microenvironments produced by reactive MG and astrocytes associated with systemic inflammation.Item Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis(BMC, 2020-04-29) Kuo, Ping-Chang; Weng, Wen-Tsan; Scofield, Barbara A.; Paraiso, Hallel C.; Brown, Dennis A.; Wang, Pei-Yu; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineBackground: Inflammatory stimuli induce immunoresponsive gene 1 (IRG1) expression that in turn catalyzes the production of itaconate from the tricarboxylic acid cycle. Itaconate has recently emerged as a regulator of immune cell functions, especially in macrophages. Studies show that itaconate is required for the activation of anti-inflammatory transcription factor Nrf2 by LPS in mouse and human macrophages, and LPS-activated IRG1-/- macrophages that lack endogenous itaconate production exhibit augmented inflammatory responses. Moreover, dimethyl itaconate (DMI), an itaconate derivative, inhibits IL-17-induced IκBς activation in keratinocytes and modulates IL-17-IκBς pathway-mediated skin inflammation in an animal model of psoriasis. Currently, the effect of itaconate on regulating macrophage functions and peripheral inflammatory immune responses is well established. However, its effect on microglia (MG) and CNS inflammatory immune responses remains unexplored. Thus, we investigated whether itaconate possesses an immunomodulatory effect on regulating MG activation and CNS inflammation in animal models of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Methods: Chronic C57BL/6 EAE was induced followed by DMI treatment. The effect of DMI on disease severity, blood-brain barrier (BBB) disruption, MG activation, peripheral Th1/Th17 differentiation, and the CNS infiltration of Th1/Th17 cells in EAE was determined. Primary MG was cultured to study the effect of DMI on MG activation. Relapsing-remitting SJL/J EAE was induced to assess the therapeutic effect of DMI. Results: Our results show DMI ameliorated disease severity in the chronic C57BL/6 EAE model. Further analysis of the cellular and molecular mechanisms revealed that DMI mitigated BBB disruption, inhibited MMP3/MMP9 production, suppressed microglia activation, inhibited peripheral Th1/Th17 differentiation, and repressed the CNS infiltration of Th1 and Th17 cells. Strikingly, DMI also exhibited a therapeutic effect on alleviating severity of relapse in the relapsing-remitting SJL/J EAE model. Conclusions: We demonstrate that DMI suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular and molecular mechanisms, suggesting that DMI can be developed as a novel therapeutic agent for theItem Dithiolethione ACDT suppresses neuroinflammation and ameliorates disease severity in experimental autoimmune encephalomyelitis(Elsevier, 2018) Kuo, Ping-Chang; Brown, Dennis A.; Scofield, Barbara A.; Paraiso, Hallel C.; Wang, Pei-Yu; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineMultiple sclerosis (MS) is an autoimmune disorder characterized by the central nervous system (CNS) infiltration of myelin-specific pathogenic T cells followed by brain inflammation in association with demyelination. Similarly, experimental autoimmune encephalomyelitis (EAE), the animal model of MS, also exhibits increased CNS infiltration of pathogenic T cells, including Th1 and Th17, leading to detrimental effects of neuroinflammation and demyelination. We previously reported that 3H-1,2-dithiole-3-thione (D3T), the structurally-simplest of the sulfur-containing dithiolethiones, exerted a promising therapeutic effect in EAE. In the current study we report that 5-Amino-3-thioxo-3H-(1,2)dithiole-4-carboxylic acid ethyl ester (ACDT), a substituted derivative of D3T, exhibits anti-inflammatory properties in EAE. ACDT, administered post immunization, delayed disease onset and reduced disease severity in chronic C57BL/6 EAE, and ACDT, administered during disease remission, suppressed disease relapse in relapsing-remitting SJL/J EAE. Further analysis of the cellular and molecular mechanisms underlying the protective effects of ACDT in EAE revealed that ACDT inhibited pathogenic T cell infiltration, suppressed microglia activation, repressed neurotoxic A1 astrocyte generation, lessened blood-brain barrier disruption, and diminished MMP3/9 production in the CNS of EAE. In summary, we demonstrate that ACDT suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular mechanisms. Our findings suggest the potential of developing ACDT as a novel therapeutic agent for the treatment of MS/EAE.Item Identification of N-benzyltetrahydroisoquinolines as novel anti-neuroinflammatory agents(Elsevier, 2018-11) Gabet, Brian; Kuo, Ping-Chang; Fuentes, Steven; Patel, Yamini; Adow, Ahmed; Alsakka, Mary; Avila, Paula; Beam, Teri; Yen, Jui-Hung; Brown, Dennis A.; Medicine, School of MedicineA series of simplified berberine analogs was designed, synthesized, and evaluated for anti-inflammatory activity. SAR studies identified N-benzyltetrahydroisoquinoline 7d as a potent berberine analog. 7d suppressed LPS-induced inflammatory cytokine levels in both BV2 cells and primary microglia. Taken together, our results suggest that simplified BB analogs have therapeutic potential as a novel class of anti-neuroinflammatory agents.Item Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia(Oxford University Press, 2021-08-19) Kuo, Ping-Chang; Weng, Wen-Tsan; Scofield, Barbara A.; Furnas, Destin; Paraiso, Hallel C.; Yu, I-Chen; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineInflammatory stimuli induce immunoresponsive gene 1 expression that in turn catalyses the production of itaconate through diverting cis-aconitate away from the tricarboxylic acid cycle. The immunoregulatory effect of the immunoresponsive gene 1/itaconate axis has been recently documented in lipopolysaccharide-activated mouse and human macrophages. In addition, dimethyl itaconate, an itaconate derivative, was reported to ameliorate disease severity in the animal models of psoriasis and multiple sclerosis. Currently, whether immunoresponsive gene 1/itaconate axis exerts a modulatory effect in ischaemic stroke remains unexplored. In this study, we investigated whether immunoresponsive gene 1 plays a role in modulating ischaemic brain injury. In addition, the molecular mechanism underlying the protective effects of immunoresponsive gene 1 in ischaemic stroke was elucidated. Our results showed that immunoresponsive gene 1 was highly induced in the ischaemic brain following ischaemic injury. Interestingly, we found that IRG1-/- stroke animals exhibited exacerbated brain injury, displayed with enlarged cerebral infarct, compared to wild-type stroke controls. Furthermore, IRG1-/- stroke animals presented aggravated blood-brain barrier disruption, associated with augmented Evans blue leakage and increased immune cell infiltrates in the ischaemic brain. Moreover, IRG1-/- stroke animals displayed elevated microglia activation, demonstrated with increased CD68, CD86 and Iba1 expression. Further analysis revealed that immunoresponsive gene 1 was induced in microglia after ischaemic stroke, and deficiency in immunoresponsive gene 1 resulted in repressed microglial heme oxygenase-1 expression and exacerbated ischaemic brain injury. Notably, the administration of dimethyl itaconate to compensate for the deficiency of immunoresponsive gene 1/itaconate axis led to enhanced microglial heme oxygenase-1 expression, alleviated ischaemic brain injury, improved motor function and decreased mortality in IRG1-/- stroke animals. In summary, we demonstrate for the first time that the induction of immunoresponsive gene 1 in microglia following ischaemic stroke serves as an endogenous protective mechanism to restrain brain injury through heme oxygenase-1 up-regulation. Thus, our findings suggest that targeting immunoresponsive gene 1 may represent a novel therapeutic approach for the treatment of ischaemic stroke.Item Inhibiting adipose tissue M1 cytokine expression decreases DPP4 activity and insulin resistance in a type 2 diabetes mellitus mouse model(PLOS, 2021-05-27) Chen, Lee-Wei; Chen, Pei-Hsuan; Yen, Jui-Hung; Microbiology and Immunology, School of MedicineAdipose tissue inflammation is a major cause of the pathogenesis of obesity and comorbidities. To study the involvement of M1/M2 cytokine expression of adipose tissue in the regulatory mechanisms of dipeptidyl peptidase 4 (DPP4) and insulin resistance in diabetes, stromal vascular fractions (SVFs) were purified from inguinal adipose tissue of diabetic (Leprdb/db) and non-diabetic (Lepr+/+) mice followed by analysis of M1/M2 cytokine expression. SVFs of Leprdb/db mice exhibited increased TNF-α, IL-6, IL-1β, CCL2, and DPP4 mRNA expression but decreased IL-10 mRNA expression. Plasma from Leprdb/db mice induced TNF-α, IL-6, IL-1β, CCL2, and DPP4 mRNA expression and plasma from Lepr+/+ mice induced IL-10 mRNA expression in SVFs from Leprdb/db mice. Injection of Lepr+/+ plasma into the adipose tissue of Leprdb/db mice decreased mRNA expression of TNF-α, IL-6, IL-1β, CCL2, and DPP4 and protein expression of pJNK and DPP4 in SVFs, reduced mRNA expression of ICAM, FMO3, IL-1β, iNOS, TNF-α, IL-6, and DPP4 and protein expression of ICAM, FMO3, and DPP4 in liver, and suppressed mRNA expression of TNF-α, IL-6, IL-1β, and DPP4 in Kupffer cells. Plasma from Leprdb/db mice did not induce M1 cytokine expression in SVFs from Leprdb/db-Jnk1-/- mice. Altogether, we demonstrate that diabetes induces M1 but decreases M2 cytokine expression in adipose tissue. Diabetic plasma-induced M1 expression is potentially through pJNK signaling pathways. Non-diabetic plasma reverses M1/M2 cytokine expression, plasma CCL2 levels, DPP4 activity, and Kupffer cell activation in diabetes. Our results suggest M1/M2 cytokine expression in adipose tissue is critical in diabetes-induced DPP4 activity, liver inflammation, and insulin resistance.