- Browse by Author
Browsing by Author "Yeh, Elizabeth Shinmay"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effects of Alpha-Connexin Carboxyl-Terminal Peptide (aCT1) and Bowman-Birk Protease Inhibitor (BBI) on Canine Oral Mucosal Melanoma (OMM) Cells(Frontiers Media, 2021-06-10) Sato, Ayami; da Fonseca, Ivone Izabel Mackowiak; Nagamine, Márcia Kazumi; de Toledo, Gabriela Fernandes; Olio, Rennan; Hernandez-Blazquez, Francisco Javier; Yano, Tomohiro; Yeh, Elizabeth Shinmay; Dagli, Maria Lucia Zaidan; Pharmacology and Toxicology, School of MedicineOral mucosal melanomas (OMM) are aggressive cancers in dogs, and are good models for human OMM. Gap junctions are composed of connexin units, which may have altered expression patterns and/or subcellular localization in cancer cells. Cell-to-cell communication by gap junctions is often impaired in cancer cells, including in melanomas. Meanwhile, the upregulated expression of the gap junction protein connexin 43 (Cx43) inhibits melanoma progression. The α-connexin carboxyl-terminal (aCT1) peptide reportedly maintains Cx43 expression and cell-cell communication in human mammary cells and increases the communication activity through gap junctions in functional assays, therefore causing decreased cell proliferation. The Bowman-Birk protease inhibitor (BBI), a component of soybeans, induces Cx43 expression in several tumor cells as a trypsin–chymotrypsin inhibition function, with antineoplastic effects. This study investigated the effect of aCT1 peptide and BBI treatment, alone or in combination, on TLM1 canine melanoma cell viability. Cell viability after treatment with aCT1, the reverse sequence peptide (R-pep), and/or BBI for 5 days was analyzed by PrestoBlue assay. Immunofluorescence was used to observe Cx43 localization and expression. aCT1 (200 μM) alone did not significantly decrease cell viability in TLM1 cells, whereas BBI (400 μg/ml) alone significantly decreased the TLM1 viability. Combined treatment with both aCT1 (200 μM) and BBI (400 μg/ml) significantly decreased cell viability in TLM1 cells. Cx43 expression, as identified by immunostainings in TLM1 cells, was increased in the cell membrane after the combination treatment with BBI and aCT1. This dual treatment can be combined to achieve the anticancer activity, possibly by increasing Cx 43 expression and affecting Cx43 migration to the cell membrane. In conclusion, a treatment strategy targeting Cx43 with BBI and aCT1 may possibly lead to new effective therapies for canine OMM.Item Inhibitory Effects of Alpha-Connexin Carboxyl-Terminal Peptide on Canine Mammary Epithelial Cells: A Study on Benign and Malignant Phenotypes(MDPI, 2024-02-18) da Fonseca, Ivone Izabel Mackowiak; Nagamine, Marcia Kazumi; Sato, Ayami; Rossatto, Carlos Alberto, Jr.; Yeh, Elizabeth Shinmay; Dagli, Lucia Zaidan; Pharmacology and Toxicology, School of MedicineMammary cancer is highly prevalent in non-castrated female dogs. Cell-to-cell communication is an important mechanism to maintain homeostasis, and connexins are proteins that assemble to form the communicating gap junctions. In many cancers, communication capacity is reduced; several approaches are being tested in order to increase the communication capacity in cancer cells and, therefore, alter their viability. This study analyzed the effects of the alpha-connexin carboxyl-terminal peptide (αCT1) on canine mammary non-neoplastic and neoplastic epithelial cells. Seven canine epithelial mammary cell lines were used. Among these, one was a normal canine epithelial mammary cell line (LOEC-NMG), two canine mammary adenomas (LOEC-MAd1 and LOEC-MAd2), and four canine mammary adenocarcinomas (LOEC-MCA1, LOEC-MCA2, LOEC-MCA3 and CF41). The αCT1 corresponds to a short Cx43 C-terminal sequence linked to an internalization sequence called the antennapedia. After 24 h of incubation, the medium containing different αCT1 peptide concentrations was added to the cells, and only the culture medium was used for control. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test was used to quantify cell viability before treatment and 48, 72, and 96 h after the treatment. Results showed that the normal mammary epithelial cell line (LOEC-NMG) was resistant to treatment with αCT1, which is consistent with a previous study on human mammary cell lines. One of the adenoma cell lines (LOEC-MAd2) was also resistant to treatment with αCT1, although the other (LOEC-MAd1) was susceptible to treatment, mostly at 72 h after treatment. Regarding the four canine adenocarcinoma cell lines, they differ regarding the susceptibility to the treatment with αCT1. Three cell lines, canine mixed adenocarcinoma (LOEC-MCA1), canine complex adenocarcinoma (LOEC-MCA2), and commercial canine mammary adenocarcinoma cell line CF41, were susceptible to treatment with αCT1, while one canine mammary adenocarcinoma cell line (LOEC-MCA3) was resistant to treatment. In most αCT1 treated cell lines, Cx43 was strongly detected in cell membranes by immunofluorescence. We propose that αCT1 restored the cell-to-cell communication capacity of neoplastic cells and induced inhibitory effects on cell viability.