- Browse by Author
Browsing by Author "Ye, Meiping"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Borrelia burgdorferi Secretes c-di-AMP as an Extracellular Pathogen-Associated Molecular Pattern to Elicit Type I Interferon Responses in Mammalian Hosts(bioRxiv, 2024-08-20) Priya, Raj; Ye, Meiping; Raghunanadanan, Sajith; Liu, Qiang; Li, Wei; Lou, Yongliang; Sintim, Herman O.; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi (B. burgdorferi), an extracellular spirochetal pathogen, elicits a type-I interferon (IFN-I) response that contributes to the pathology of Lyme disease, including the development and severity of Lyme arthritis. However, the specific Pathogen-Associated Molecular Patterns (PAMPs) of B. burgdorferi responsible for triggering the IFN-I response are not well understood. Previous studies have identified an unknown, nuclease-resistant component in B. burgdorferi culture supernatants that significantly stimulates the IFN-I response, but its identity remains unknown. In this study, we reveal that B. burgdorferi secretes cyclic-di-adenosine monophosphate (c-di-AMP) as a key extracellular PAMP, inducing the host IFN-I response in macrophages. Using genetically manipulated B. burgdorferi strains, we demonstrate a requirement of c-di-AMP for stimulating IFN-I response by macrophages ex vivo. Additionally, infecting mice with B. burgdorferi alongside exogenous c-di-AMP resulted in a markedly increased IFN-I response in mouse tissues. Furthermore, inactivation or inhibition of the host STING signaling pathway significantly reduced the IFN-I response, indicating that c-di-AMP-induced IFN-I production is STING-dependent. Our findings identify c-di-AMP as a crucial PAMP secreted by B. burgdorferi to elicit the host IFN-I response via activation of STING signaling pathway, suggesting that targeting c-di-AMP production could represent a novel therapeutic strategy against Lyme arthritis.Item DhhP, a Cyclic di-AMP Phosphodiesterase of Borrelia burgdorferi, Is Essential for Cell Growth and Virulence(ASM, 2014-05) Ye, Meiping; Zhang, Jun-Jie; Fang, Xin; Lawlis, Gavin B.; Troxell, Bryan; Zhou, Yan; Gomelsky, Mark; Lou, Yongliang; Yang, X. Frank; Department of Microbiology and Immunology, IU School of MedicineCyclic di-AMP (c-di-AMP) is a recently discovered second messenger in bacteria. Most of work on c-di-AMP signaling has been done in Gram-positive bacteria, firmicutes, and actinobacteria, where c-di-AMP signaling pathways affect potassium transport, cell wall structure, and antibiotic resistance. Little is known about c-di-AMP signaling in other bacteria. Borrelia burgdorferi, the causative agent of Lyme disease, is a spirochete that has a Gram-negative dual membrane. In this study, we demonstrated that B. burgdorferi BB0619, a DHH-DHHA1 domain protein (herein designated DhhP), functions as c-di-AMP phosphodiesterase. Recombinant DhhP hydrolyzed c-di-AMP to pApA in a Mn2+- or Mg2+-dependent manner. In contrast to c-di-AMP phosphodiesterases reported thus far, DhhP appears to be essential for B. burgdorferi growth both in vitro and in the mammalian host. Inactivation of the chromosomal dhhP gene could be achieved only in the presence of a plasmid-encoded inducible dhhP gene. The conditional dhhP mutant had a dramatic increase in intracellular c-di-AMP level in comparison to the isogenic wild-type strain. Unlike what has been observed in Gram-positive bacteria, elevated cellular c-di-AMP in B. burgdorferi did not result in an increased resistance to β-lactamase antibiotics, suggesting that c-di-AMP's functions in spirochetes differ from those in Gram-positive bacteria. In addition, the dhhP mutant was defective in induction of the σS factor, RpoS, and the RpoS-dependent outer membrane virulence factor OspC, which uncovers an important role of c-di-AMP in B. burgdorferi virulence.Item Genome reduction of Borrelia burgdorferi: two TCS signaling pathways for two distinct host habitats(Springer, 2016-01) Ye, Meiping; Zhou, Yan; Lou, Yongliang; Yang, X. Frank; Department of Microbiology and Immunology, IU School of MedicineItem HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts(American Society for Microbiology, 2016-07) Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A.; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X. Frank; Pal, Utpal; Department of Microbiology and Immunology, IU School of MedicineHigh-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity.