- Browse by Author
Browsing by Author "Yang, Xiuli"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A systemic approach to identify non-abundant immunogenic proteins in Lyme disease pathogens(American Society for Microbiology, 2024) Yaş, Ozlem Buyuktanir; Coleman, Adam S.; Lipman, Rachel M.; Sharma, Kavita; Raghunandanan, Sajith; Alanazi, Fuad; Rana, Vipin S.; Kitsou, Chrysoula; Yang, Xiuli; Pal, Utpal; Microbiology and Immunology, School of MedicineBorrelia burgdorferi, the pathogen of Lyme disease, differentially produces many outer surface proteins (Osp), some of which represent the most abundant membrane proteins, such as OspA, OspB, and OspC. In cultured bacteria, these proteins can account for a substantial fraction of the total cellular or membrane proteins, posing challenges to the identification and analysis of non-abundant proteins, which could serve as novel pathogen detection markers or as vaccine candidates. Herein, we introduced serial mutations to remove these abundant Osps and generated a B. burgdorferi mutant deficient in OspA, OspB, and OspC in an infectious 297-isolate background, designated as OspABC- mutant. Compared to parental isolate, the mutant did not reflect growth defects in the cultured medium but showed differential mRNA expression of representative tested genes, in addition to gross changes in cellular and membrane protein profiles. The analysis of differentially detectable protein contents of the OspABC- mutant, as compared to the wild type, by two-dimensional gel electrophoresis followed by liquid chromatography-mass spectrometry, identified several spirochete proteins that are dominated by proteins of unknown functions, as well as membrane transporters, chaperons, and metabolic enzymes. We produced recombinant forms of two of these represented proteins, BBA34 and BB0238, and showed that these proteins are detectable during spirochete infection in the tick-borne murine model of Lyme borreliosis and thus serve as potential antigenic markers of the infection. IMPORTANCE: The present manuscript employed a systemic approach to identify non-abundant proteins in cultured Borrelia burgdorferi that are otherwise masked or hidden due to the overwhelming presence of abundant Osps like OspA, OspB, and OspC. As these Osps are either absent or transiently expressed in mammals, we performed a proof-of-concept study in which their removal allowed the analysis of otherwise less abundant antigens in OspABC-deficient mutants and identified several immunogenic proteins, including BBA34 and BB0238. These antigens could serve as novel vaccine candidates and/or genetic markers of Lyme borreliosis, promoting new research in the clinical diagnosis and prevention of Lyme disease.Item Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis(Nature, 2015-09) Carrasco, Sebastian E.; Yang, Youyun; Troxell, Bryan; Yang, Xiuli; Pal, Utpal; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineBorrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.Item HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts(American Society for Microbiology, 2016-07) Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A.; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X. Frank; Pal, Utpal; Department of Microbiology and Immunology, IU School of MedicineHigh-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity.