ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yang, Liu"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    E2F1 Suppresses Oxidative Metabolism and Endothelial Differentiation of Bone Marrow Progenitor Cells
    (American Heart Association, 2018-03-02) Xu, Shiyue; Tao, Jun; Yang, Liu; Zhang, Eric; Boriboun, Chan; Zhou, Junlan; Sun, Tianjiao; Cheng, Min; Huang, Kai; Shi, Jiawei; Dong, Nian-Guo; Liu, Qinghua; Zhao, Ting C.; Qiu, Hongyu; Harris, Robert A.; Chandel, Navdeep S.; Losordo, Douglas W.; Qin, Gangjian; Biochemistry and Molecular Biology, School of Medicine
    RATIONALE: The majority of current cardiovascular cell therapy trials use bone marrow progenitor cells (BM PCs) and achieve only modest efficacy; the limited potential of these cells to differentiate into endothelial-lineage cells is one of the major barriers to the success of this promising therapy. We have previously reported that the E2F transcription factor 1 (E2F1) is a repressor of revascularization after ischemic injury. OBJECTIVE: We sought to define the role of E2F1 in the regulation of BM PC function. METHODS AND RESULTS: Ablation of E2F1 (E2F1 deficient) in mouse BM PCs increases oxidative metabolism and reduces lactate production, resulting in enhanced endothelial differentiation. The metabolic switch in E2F1-deficient BM PCs is mediated by a reduction in the expression of pyruvate dehydrogenase kinase 4 and pyruvate dehydrogenase kinase 2; overexpression of pyruvate dehydrogenase kinase 4 reverses the enhancement of oxidative metabolism and endothelial differentiation. Deletion of E2F1 in the BM increases the amount of PC-derived endothelial cells in the ischemic myocardium, enhances vascular growth, reduces infarct size, and improves cardiac function after myocardial infarction. CONCLUSION: Our results suggest a novel mechanism by which E2F1 mediates the metabolic control of BM PC differentiation, and strategies that inhibit E2F1 or enhance oxidative metabolism in BM PCs may improve the effectiveness of cell therapy.
  • Loading...
    Thumbnail Image
    Item
    An Open-Label, Dose-Escalation Study to Assess the Safety and Efficacy of IL-22 Agonist F-652 in Patients With Alcohol-associated Hepatitis
    (Wolters Kluwer, 2020-08) Arab, Juan P.; Sehrawat, Tejasav S.; Simonetto, Douglas A.; Verma, Vikas K.; Feng, Dechun; Tang, Tom; Dreyer, Kevin; Yan, Xiaoqiang; Daley, William L.; Sanyal, Arun; Chalasani, Naga; Radaeva, Svetlana; Yang, Liu; Vargas, Hugo; Ibacache, Mauricio; Gao, Bin; Gores, Gregory J.; Malhi, Harmeet; Kamath, Patrick S.; Shah, Vijay H.; Medicine, School of Medicine
    Background and aims: Interleukin-22 has beneficial effects on inflammation and impaired hepatic regeneration that characterize alcohol-associated hepatitis (AH). F-652 is a recombinant fusion protein of human interleukin-22 and immunoglobulin G2 fragment crystallizable. This study aims to assess the safety and efficacy signals of F-652 in patients with moderate and severe AH. Approach and results: A phase-2 dose-escalating study was carried out. F-652 (10 μg/kg, 30 μg/kg, or 45 μg/kg) administered on days 1 and 7 was tested in 3 patients each with moderate (Model for End-Stage Liver Disease [MELD] scores: 11-20) and severe AH (MELD scores: 21-28). Safety was defined by absence of serious adverse events and efficacy was assessed by Lille score, changes in MELD score, and serum bilirubin and aminotransferases at days 28 and 42. Three independent propensity-matched comparator patient cohorts were used. Plasma extracellular vesicles and multiplex serum cytokines were measured to assess inflammation and hepatic regeneration. Eighteen patients (9 moderate and 9 severe AH) were enrolled, 66% were male, and the mean age was 48 years. The half-life of F-652 following the first dose was 61-85 hours. There were no serious adverse events leading to discontinuation. The MELD score and serum aminotransferases decreased significantly at days 28 and 42 from baseline (P < 0.05). Day-7 Lille score was 0.45 or less in 83% patients as compared with 6%, 12%, and 56% among the comparator cohorts. Extracellular vesicle counts decreased significantly at day 28 (P < 0.013). Cytokine inflammatory markers were down-regulated, and regeneration markers were up-regulated at days 28 and 42. Conclusions: F-652 is safe in doses up to 45 μg/kg and associated with a high rate of improvement as determined by Lille and MELD scores, reductions in markers of inflammation and increases in markers of hepatic regeneration. This study supports the need for randomized placebo-controlled trials to test the efficacy of F-652 in AH.
  • Loading...
    Thumbnail Image
    Item
    Regulation of interleukin (IL)-11 gene expression in primate bone marrow stromal cells
    (1997) Yang, Liu
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University