- Browse by Author
Browsing by Author "Yang, Youyun"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in Borrelia burgdorferi(Public Library of Science (PLoS), 2015) Richards, Crystal L.; Lawrence, Kevin A.; Su, Hua; Yang, Youyun; Yang, X. Frank; Dulebohn, Daniel P.; Gherardini, Frank C.; Department of Microbiology and Immunology, IU School of MedicineIn B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp2, including the cognate histidine kinase, Hk2 (BB0764), non-cognate histidine kinases such as Hk1, CheA1, and CheA2, and small molecular weight P-donors such as carbamoyl-phosphate and acetyl-phosphate (AcP). In a report by Xu et al., exogenous sodium acetate led to increased expression of RpoS and OspC and it was hypothesized this effect was due to increased levels of AcP via the enzyme AckA (BB0622). Genome analyses identified only one pathway that could generate AcP in B. burgdorferi: the acetate/mevalonate pathway that synthesizes the lipid, undecaprenyl phosphate (C55-P, lipid I), which is essential for cell wall biogenesis. To assess the role of AcP in Rrp2-dependent regulation of RpoS and OspC, we used a unique selection strategy to generate mutants that lacked ackA (bb0622: acetate to AcP) or pta (bb0589: AcP to acetyl-CoA). These mutants have an absolute requirement for mevalonate and demonstrate that ackA and pta are required for cell viability. When the ΔackA or Δpta mutant was exposed to conditions (i.e., increased temperature or cell density) that up-regulate the expression of RpoS and OspC, normal induction of those proteins was observed. In addition, adding 20mM acetate or 20mM benzoate to the growth media of B. burgdorferi strain B31 ΔackA induced the expression of RpoS and OspC. These data suggest that AcP (generated by AckA) is not directly involved in modulating the Rrp2-RpoN-RpoS regulatory pathway and that exogenous acetate or benzoate are triggering an acid stress response in B. burgdorferi.Item Borrelia burgdorferi elongation factor EF-Tu is an immunogenic protein during Lyme borreliosis(Nature, 2015-09) Carrasco, Sebastian E.; Yang, Youyun; Troxell, Bryan; Yang, Xiuli; Pal, Utpal; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineBorrelia burgdorferi, the etiological agent of Lyme disease, does not produce lipopolysaccharide but expresses a large number of lipoproteins on its cell surface. These outer membrane lipoproteins are highly immunogenic and have been used for serodiagnosis of Lyme disease. Recent studies have shown that highly conserved cytosolic proteins such as enolase and elongation factor Tu (EF-Tu) unexpectedly localized on the surface of bacteria including B. burgdorferi, and surface-localized enolase has shown to contribute to the enzootic cycle of B. burgdorferi. In this study, we studied the immunogenicity, surface localization, and function of B. burgdorferi EF-Tu. We found that EF-Tu is highly immunogenic in mice, and EF-Tu antibodies were readily detected in Lyme disease patients. On the other hand, active immunization studies showed that EF-Tu antibodies did not protect mice from infection when challenged with B. burgdorferi via either needle inoculation or tick bites. Borrelial mouse-tick cycle studies showed that EF-Tu antibodies also did not block B. burgdorferi migration and survival in ticks. Consistent with these findings, we found that EF-Tu primarily localizes in the protoplasmic cylinder of spirochetes and is not on the surface of B. burgdorferi. Taken together, our studies suggest that B. burgdorferi EF-Tu is not surfaced exposed, but it is highly immunogenic and is a potential serodiagnostic marker for Lyme borreliosis.Item Comparative vector competence of North American Lyme disease vectors(BMC, 2020-01-14) Couper, Lisa I.; Yang, Youyun; Yang, Xiaofeng Frank; Swei, Andrea; Microbiology and Immunology, School of MedicineBackground Understanding the drivers of Lyme disease incidence at broad spatial scales is critical for predicting and mitigating human disease risk. Previous studies have identified vector phenology and behavior, host community composition, and landscape features as drivers of variable Lyme disease risk. However, while the Lyme disease transmission cycles in the eastern and western USA involve different vector species (Ixodes scapularis and Ixodes pacificus, respectively), the role of vector-specific differences in transmission efficiency has not been directly examined. By comparing the performance of traits involved in vector competence between these two species, this study aims to identify how vector competence contributes to variable Lyme disease risk. Methods We used a suite of laboratory experiments to compare the performance of traits related to vector competence for the two USA Lyme disease vectors. For each species, we measured the rate of attachment to a common rodent host, the engorgement weight, and the efficiency of pathogen acquisition (host to tick) and pathogen transmission (tick to host) from laboratory mice. In measuring pathogen acquisition and transmission, we used two different pathogen strains, one sympatric with I. scapularis and one sympatric with I. pacificus, to assess the importance of vector-pathogen coevolutionary history in transmission dynamics. Results We found I. pacificus had significantly higher host attachment success and engorgement weights, but significantly lower pathogen transmission efficiency relative to I. scapularis. Molting success and pathogen acquisition did not differ between these two species. However, pathogen acquisition efficiency was significantly higher for both sympatric vector and pathogen strains than the allopatric pairings. Conclusions This study identified species-specific vector traits as a potential driver of broad scale variation in Lyme disease risk in the USA. In particular, the exceedingly low rates of pathogen transmission from tick to host observed for I. pacificus may limit Lyme disease transmission efficiency in the western USA. Further, observed variation in pathogen acquisition between sympatric and allopatric vector-pathogen strains indicate that vector-pathogen coevolutionary history may play a key role in transmission dynamics. These findings underscore the need to consider vector traits and vector-pathogen coevolution as important factors governing regional Lyme disease risk.Item Human ABCC1 Interacts and Colocalizes with ATP Synthase α, Revealed by Interactive Proteomics Analysis(American Chemical Society, 2012-02-03) Yang, Youyun; Li, Zhaomin; Mo, Wei; Ambadipudi, Raghuram; Arnold, Randy J.; Hrncirova, Petra; Novotny, Milos V.; Georges, Elias; Zhang, Jian-Ting; Pharmacology and Toxicology, School of MedicineHuman ABCC1 is a member of the ATP-binding cassette (ABC) transporter superfamily, and its overexpression has been shown to cause multidrug resistance by active efflux of a wide variety of anticancer drugs. ABCC1 has been shown to exist and possibly function as a homodimer. However, a possible heterocomplex involving ABCC1 has been indicated. In this study, we performed an interactive proteomics study to examine proteins that bind to and form heterocomplexes with ABCC1 using coimmunoprecipitation and tandem mass spectrometry (MS/MS) analyses. We found that ATP synthase α binds to ABCC1 in plasma membranes with a ratio of 2:1. The ATP synthase α binding site in ABCC1 is located in the linker domain at the carboxyl core of ABCC1, and phosphorylation of the linker domain at the protein kinase A site enhances ATP synthase α binding. The interaction between ABCC1 and ATP synthase α in a heterocomplex may indicate a novel function of ABCC1 in regulating extracellular ATP level and purinergic signaling cascade.Item Insight into the Dual Functions of Bacterial Enhancer-Binding Protein Rrp2 of Borrelia burgdorferi(American Society for Microbiology, 2016-05-15) Yin, Yanping; Yang, Youyun; Xiang, Xuwu; Wang, Qian; Yang, Zhang-Nv; Blevins, Jon; Lou, Yongliang; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineIt is well established that the RpoN-RpoS sigma factor (σ(54)-σ(S)) cascade plays an essential role in differential gene expression during the enzootic cycle of Borrelia burgdorferi, the causative agent of Lyme disease. The RpoN-RpoS pathway is activated by the response regulator/σ(54)-dependent activator (also called bacterial enhancer-binding protein [bEBP]) Rrp2. One unique feature of Rrp2 is that this activator is essential for cell replication, whereas RpoN-RpoS is dispensable for bacterial growth. How Rrp2 controls cell replication, a function that is independent of RpoN-RpoS, remains to be elucidated. In this study, by generating a series of conditional rrp2 mutant strains, we demonstrated that the N-terminal receiver domain of Rrp2 is required for spirochetal growth. Furthermore, a D52A point mutation at the phosphorylation site within the N terminus of Rrp2 abolished cell replication. Mutation of the ATPase motif within the central domain of Rrp2 did not affect spirochetal replication, indicating that phosphorylation-dependent ATPase activity of Rrp2 for σ(54) activation is not required for cell growth. However, deletion of the C-terminal domain or a 16-amino-acid truncation of the helix-turn-helix (HTH) DNA-binding motif within the C-terminal domain of Rrp2 abolished spirochetal replication. It was shown that constitutive expression of rpoS is deleterious to borrelial growth. We showed that the essential nature of Rrp2 is not due to an effect on rpoS These data suggest that phosphorylation-dependent oligomerization and DNA binding of Rrp2 likely function as a repressor, independently of the activation of σ(54), controlling an essential step of cell replication in B. burgdorferi IMPORTANCE: Bacterial enhancer-binding proteins (bEBPs) are a unique group of transcriptional activators specifically required for σ(54)-dependent gene transcription. This work demonstrates that the B. burgdorferi bEBP, Rrp2, has an additional function that is independent of σ(54), that of its essentiality for spirochetal growth, and such a function is dependent on its N-terminal signal domain and C-terminal DNA-binding domain. These findings expand our knowledge on bEBP and provide a foundation to further study the underlying mechanism of this new function of bEBP.Item Investigation of ospC Expression Variation among Borrelia burgdorferi Strains(Frontiers, 2017-04-20) Xiang, Xuwu; Yang, Youyun; Du, Jimei; Lin, Tianyu; Chen, Tong; Yang, X. Frank; Lou, Yongliang; Microbiology and Immunology, School of MedicineOuter surface protein C (OspC) is the most studied major virulence factor of Borrelia burgdorferi, the causative agent of Lyme disease. The level of OspC varies dramatically among B. burgdorferi strains when cultured in vitro, but little is known about what causes such variation. It has been proposed that the difference in endogenous plasmid contents among strains contribute to variation in OspC phenotype, as B. burgdorferi contains more than 21 endogenous linear (lp) and circular plasmids (cp), and some of which are prone to be lost. In this study, we analyzed several clones isolated from B. burgdorferi strain 297, one of the most commonly used strains for studying ospC expression. By taking advantage of recently published plasmid sequence of strain 297, we developed a multiplex PCR method specifically for rapid plasmid profiling of B. burgdorferi strain 297. We found that some commonly used 297 clones that were thought having a complete plasmid profile, actually lacked some endogenous plasmids. Importantly, the result showed that the difference in plasmid profiles did not contribute to the ospC expression variation among the clones. Furthermore, we found that B. burgdorferi clones expressed different levels of BosR, which in turn led to different levels of RpoS and subsequently, resulted in OspC level variation among B. burgdorferi strains.Item LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen(Nature Publishing Group, 2018-07-09) Chen, Tong; Xiang, Xuwu; Xu, Haijun; Zhang, Xuechao; Zhou, Bibi; Yang, Youyun; Lou, Yongliang; Yang, X. Frank; Microbiology and Immunology, School of MedicineLittle is known about how Borrelia burgdorferi, the Lyme disease pathogen, adapts and survives in the tick vector. We previously identified a bacterial CarD N-terminal-like (CdnL) protein, LtpA (BB0355), in B. burgdorferi that is preferably expressed at lower temperatures, which is a surrogate condition mimicking the tick portion of the enzootic cycle of B. burgdorferi. CdnL-family proteins, an emerging class of bacterial RNAP-interacting transcription factors, are essential for the viability of Mycobacterium tuberculosis and Myxococcus xanthus. Previous attempts to inactivate ltpA in B. burgdorferi have not been successful. In this study, we report the construction of a ltpA mutant in the infectious strain of B. burgdorferi, strain B31-5A4NP1. Unlike CdnL in M. tuberculosis and M. xanthus, LtpA is dispensable for the viability of B. burgdorferi. However, the ltpA mutant exhibits a reduced growth rate and a cold-sensitive phenotype. We demonstrate that LtpA positively regulates 16S rRNA expression, which contributes to the growth defects in the ltpA mutant. The ltpA mutant remains capable of infecting mice, albeit with delayed infection. Additionally, the ltpA mutant produces markedly reduced spirochetal loads in ticks and was not able to infect mice via tick infection. Overall, LtpA represents a novel regulator in the CdnL family that has an important role in the enzootic cycle of B. burgdorferi.Item The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the Lyme disease pathogen(Elsevier, 2018) Zhou, Bibi; Yang, Youyun; Chen, Tong; Lou, Yongliang; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi sensu lato, the agent of Lyme disease, exists in nature through a complex enzootic life cycle that involves both ticks and mammals. The B. burgdorferi genome encodes five Oligopeptide ABC transporters (Opp) that are predicted to be involve in transport of various nutrients. Previously, it was reported that OppA5 is important for the optimal production of OspC, a major virulence factor of B. burgdorferi. In this study, possible role of another Oligopeptide ABC transporter, OppA4 in ospC expression was investigated by construction of an oppA4 deletion mutant and the complemented strain. Inactivation of oppA4 resulted an increased production of OspC, suggesting that OppA4 has a negative impact on ospC expression. Expression of ospC is controlled by Rrp2-RpoN-RpoS, the central pathway essential for mammal infection. We showed that increased ospC expression in the oppA4 mutant was due to an increased rpoS expression. We then further investigated how OppA4 negatively regulates this pathway. Two regulators, BosR and BadR, are known to positively and negatively, respectively, regulate the Rrp2-RpoN-RpoS pathway. We found that deletion of oppA4 resulted in an increased level of BosR. Previous reports showed that bosR is mainly regulated at the post-transcriptional level by other factors. However, OppA4 appears to negatively regulate bosR expression at the transcriptional level. The finding of OppA4 involved in regulation of the Rrp2-RpoN-RpoS pathway further reinforces the importance of nutritional virulence to the enzootic cycle of B. burgdorferi.Item Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages(American Society for Microbiology, 2015-12) Carrasco, Sebastian E.; Troxell, Bryan; Yang, Youyun; Brandt, Stephanie L.; Li, Hongxia; Sandusky, George E.; Condon, Keith W.; Serezani, C. Henrique; Yang, X. Frank; Department of Microbiology & Immunology, IU School of MedicineOuter surface protein C (OspC) is one of the major lipoproteins expressed on the surface of Borrelia burgdorferi during tick feeding and the early phase of mammalian infection. OspC is required for B. burgdorferi to establish infection in both immunocompetent and SCID mice and has been proposed to facilitate evasion of innate immune defenses. However, the exact biological function of OspC remains elusive. In this study, we showed that the ospC-deficient spirochete could not establish infection in NOD-scid IL2rγ(null) mice that lack B cells, T cells, NK cells, and lytic complement. The ospC mutant also could not establish infection in anti-Ly6G-treated SCID and C3H/HeN mice (depletion of neutrophils). However, depletion of mononuclear phagocytes at the skin site of inoculation in SCID and C3H/HeN mice allowed the ospC mutant to establish infection in vivo. In phagocyte-depleted mice, the ospC mutant was able to colonize the joints and triggered neutrophilia during dissemination. Furthermore, we found that phagocytosis of green fluorescent protein (GFP)-expressing ospC mutant spirochetes by murine peritoneal macrophages and human THP-1 macrophage-like cells, but not in PMN-HL60, was significantly higher than parental wild-type B. burgdorferi strains, suggesting that OspC has an antiphagocytic property. In addition, overproduction of OspC in spirochetes also decreased the uptake of spirochetes by murine peritoneal macrophages. Together, our findings provide evidence that mononuclear phagocytes play a key role in clearance of the ospC mutant and that OspC promotes spirochetes' evasion of macrophages during early Lyme borreliosis.Item Positive and Negative Regulation of Glycerol Utilization by the c-di-GMP Binding Protein PlzA in Borrelia burgdorferi(American Society for Microbiology, 2018-10-23) Zhang, Jun-Jie; Chen, Tong; Yang, Youyun; Du, Jimei; Li, Hongxia; Troxell, Bryan; He, Ming; Carrasco, Sebastian E.; Gomelsky, Mark; Yang, X. Frank; Microbiology and Immunology, School of MedicineBorrelia burgdorferi, the causative agent of Lyme disease, encounters two disparate host environments during its enzootic life cycle, Ixodes ticks and mammalian hosts. B. burgdorferi has a small genome that encodes a streamlined cyclic dimeric GMP (c-di-GMP) signaling system comprising a single diguanylate cyclase, Rrp1, and two phosphodiesterases. This system is essential for spirochete survival in ticks, in part because it controls the expression of the glp operon involved in glycerol utilization. In this study, we showed that a B. burgdorferi c-di-GMP receptor, PlzA, functions as both a positive and a negative regulator for glp expression. Deletion of plzA or mutation in plzA that impaired c-di-GMP binding abolished glp expression. On the other hand, overexpression of plzA resulted in glp repression, which could be rescued by simultaneous overexpression of rrp1. plzA overexpression in the rrp1 mutant, which is devoid of c-di-GMP, or overexpression of a plzA mutant incapable of c-di-GMP binding further enhanced glp repression. Combined results suggest that c-di-GMP-bound PlzA functions as a positive regulator, whereas ligand-free PlzA acts as a negative regulator for glp expression. Thus, PlzA of B. burgdorferi with a streamlined c-di-GMP signaling system not only controls multiple targets, as previously envisioned, but has also evolved different modes of action.IMPORTANCE The Lyme disease pathogen, Borrelia burgdorferi, has a simple cyclic dimeric GMP (c-di-GMP) signaling system essential for adaptation of the pathogen to the complicated tick environment. The c-di-GMP effector of B. burgdorferi, PlzA, has been shown to regulate multiple cellular processes, including motility, osmolality sensing, and nutrient utilization. The findings of this study demonstrate that PlzA not only controls multiple targets but also has different functional modalities, allowing it to act as both positive and negative regulator of the glp operon expression. This work highlights how bacteria with a small genome can compensate for the limited regulatory repertoire by increasing the complexity of targets and modes of action in their regulatory proteins.