- Browse by Author
Browsing by Author "Yang, Yang"
Now showing 1 - 10 of 28
Results Per Page
Sort Options
Item Age-dependent formation of TMEM106B amyloid filaments in human brains(Springer Nature, 2022) Schweighauser, Manuel; Arseni, Diana; Bacioglu, Mehtap; Huang, Melissa; Lövestam, Sofia; Shi, Yang; Yang, Yang; Zhang, Wenjuan; Kotecha, Abhay; Garringer, Holly J.; Vidal, Ruben; Hallinan, Grace I.; Newell, Kathy L.; Tarutani, Airi; Murayama, Shigeo; Miyazaki, Masayuki; Saito, Yuko; Yoshida, Mari; Hasegawa, Kazuko; Lashley, Tammaryn; Revesz, Tamas; Kovacs, Gabor G.; van Swieten, John; Takao, Masaki; Hasegawa, Masato; Ghetti, Bernardino; Spillantini, Maria Grazia; Ryskeldi-Falcon, Benjamin; Murzin, Alexey G.; Goedert, Michel; Scheres, Sjors H.W.; Pathology and Laboratory Medicine, School of MedicineMany age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-β, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-β amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.Item BMI, leisure-time physical activity, and physical fitness in adults in China: results from a series of national surveys, 2000–14(Elsevier, 2016-06) Tian, Ye; Jiang, Chongmin; Wang, Mei; Cai, Rui; Zhang, Yanfeng; He, Zihong; Wang, Huan; Wu, Dongming; Wang, Fubaihui; Tang, Qiang; Yang, Yang; Zhao, Jin; Lv, Shaojun; Zhou, Weihai; Yu, Bo; Lan, Jiang; Yang, Xinping; Zhang, Linxia; Tian, Hui; Gu, Zhuangzhuang; Song, Yiqing; Huang, Tianyi; McNaughton, Lars R.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthBackground Obesity, physical inactivity, and reduced physical fitness contribute to the rising burden of chronic diseases in China. We investigated these factors in Chinese adults over a 14-year period (2000–14) using data from randomised national surveys. Methods We did four national surveys in 2000, 2005, 2010, and 2014 among Chinese adults aged 20–59 years. We used BMI to assess underweight (<18·5 kg/m2), overweight (≥23·0 to <27·5 kg/m2), and obesity (≥27·5 kg/m2). Central obesity was defined as a waist circumference greater than 90 cm in men and greater than 85 cm in women. We assessed leisure-time physical activity (LTPA) by whether or not participants had completed the recommended minimum 150 min of moderate or 75 min of vigorous exercise per week. Indices for assessment of physical fitness were forced vital capacity, resting heart rate, hand grip strength, sit and reach distance, and time standing on one leg. Findings 151 656 (78%) of 193 440 adults responded to the survey in 2000, 163 386 (84%) in 2005, 154 931 (80%) in 2010, and 146 703 (76%) in 2014. The prevalence of obesity increased from 8·6% in 2000, to 10·3% in 2005, 12·2% in 2010, and 12·9% in 2014 (estimated increase 0·32% per year, 95% CI 0·30–0·33; p<0·0001). The equivalent estimates were 37·4%, 39·2%, 40·7%, and 41·2% for overweight (estimated increase 0·27% per year, 95% CI 0·25–0·30; p<0·0001) and 13·9%, 18·3%, 22·1%, and 24·9% for central obesity (estimated increase 0·78% per year, 0·76–0·80; p<0·0001). The prevalence of overweight, obesity, and central obesity increased with age (all p<0·0001) and was higher in men than in women (all p<0·0001). We noted a simultaneous decrease in the prevalence of underweight (estimated decrease of 0·06% per year, 95% CI 0·04–0·07; p<0·0001). The proportion of adults meeting the minimum LTPA recommendation increased over time (17·2% in 2000, 18·1% in 2005, and 22·8% in 2014), with the estimated prevalence change per year being 0·33% (95% CI 0·24–0·42; p<0·0001) for underweight people, 0·50% (0·47–0·53; p<0·0001) for normal-weight people, 0·37% (0·34–0·40; p<0·0001) for overweight people, and 0·06% (0·00–0·13; p=0·044) for obese people. We noted deteriorations over time in all measures of physical fitness in normal-weight adults (all p<0·0001), apart from resting heart rate (p=0·69). Interpretation Despite increased participation in LTPA, we noted increases in overweight or obesity and a decrease in physical fitness in Chinese adults. Continued nationwide interventions are needed to promote physical activity and other healthy lifestyle behaviours in China.Item CNC-bZIP protein NFE2L1 regulates osteoclast differentiation in antioxidant-dependent and independent manners(Elsevier, 2021-11-06) Liu, Zhiyuan; Wang, Huihui; Hou, Yongyong; Yang, Yang; Jia, Jingkun; Wu, Jinzhi; Zuo, Zhuo; Gao, Tianchang; Ren, Suping; Bian, Yiying; Liu, Shengnan; Fu, Jingqi; Sun, Yongxin; Li, Jiliang; Yamamoto, Masayuki; Zhang, Qiang; Xu, Yuanyuan; Pi, Jingbo; Biology, School of ScienceFine-tuning of osteoclast differentiation (OD) and bone remodeling is crucial for bone homeostasis. Dissecting the mechanisms regulating osteoclastogenesis is fundamental to understanding the pathogenesis of various bone disorders including osteoporosis and arthritis. Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as NRF1), which belongs to the CNC-bZIP family of transcription factors, orchestrates a variety of physiological processes and stress responses. While Nfe2l1 gene may be transcribed into multiple alternatively spliced isoforms, the biological function of the different isoforms of NFE2L1 in bone metabolism, osteoclastogenesis in particular, has not been reported. Here we demonstrate that knockout of all isoforms of Nfe2l1 transcripts specifically in the myeloid lineage in mice [Nfe2l1(M)-KO] results in increased activity of osteoclasts, decreased bone mass and worsening of osteoporosis induced by ovariectomy and aging. In comparison, LysM-Cre-mediated Nfe2l1 deletion has no significant effect on the osteoblast and osteocytes. Mechanistic investigations using bone marrow cells and RAW 264.7 cells revealed that deficiency of Nfe2l1 leads to accelerated and elevated OD, which is attributed, at least in part, to enhanced accumulation of ROS in the early stage of OD and expression of nuclear factor of activated T cells, cytoplasmic, calcineurin dependent 1α (Nfatc1/α). In addition, NFE2L1 regulates the transcription of multiple antioxidant genes and Nfatc1/α and OD in an isoform-specific manner. While long isoforms of NFE2L1 function as accelerators of induction of Nfatc1/α and antioxidant genes and OD, the short isoform NFE2L1-453 serves as a brake that keeps the long isoforms’ accelerator effects in check. These findings provide a novel insight into the regulatory roles of NFE2L1 in osteoclastogenesis and highlight that NFE2L1 is essential in regulating bone remodeling and thus may be a valuable therapeutic target for bone disorders.Item Cryo-EM structures of amyloid-β 42 filaments from human brains(American Association for the Advancement of Science, 2022) Yang, Yang; Arseni, Diana; Zhang, Wenjuan; Huang, Melissa; Lövestam, Sofia; Schweighauser, Manuel; Kotecha, Abhay; Murzin, Alexey G.; Peak-Chew, Sew Y.; Macdonald, Jennifer; Lavenir, Isabelle; Garringer, Holly J.; Gelpi, Ellen; Newell, Kathy L.; Kovacs, Gabor G.; Vidal, Ruben; Ghetti, Bernardino; Falcon, Benjamin; Scheres, Sjors H.W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineFilament assembly of amyloid-β peptides ending at residue 42 (Aβ42) is a central event in Alzheimer’s disease. Here, we report the cryo–electron microscopy (cryo-EM) structures of Aβ42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer’s disease, and type II filaments were found in individuals with familial Alzheimer’s disease and other conditions. The structures of Aβ42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aβ42 deposits were made of type II filaments. Knowledge of Aβ42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.Item Cryo-EM structures of amyloid-β filaments with the Arctic mutation (E22G) from human and mouse brains(Springer, 2023) Yang, Yang; Zhang, Wenjuan; Murzin, Alexey G.; Schweighauser, Manuel; Huang, Melissa; Lövestam, Sofia; Peak‑Chew, Sew Y.; Saito, Takashi; Saido, Takaomi C.; Macdonald, Jennifer; Lavenir, Isabelle; Ghetti, Bernardino; Graff, Caroline; Kumar, Amit; Nordberg, Agneta; Goedert, Michel; Scheres, Sjors H. W.; Pathology and Laboratory Medicine, School of MedicineThe Arctic mutation, encoding E693G in the amyloid precursor protein (APP) gene [E22G in amyloid-β (Aβ)], causes dominantly inherited Alzheimer’s disease. Here, we report the high-resolution cryo-EM structures of Aβ filaments from the frontal cortex of a previously described case (AβPParc1) with the Arctic mutation. Most filaments consist of two pairs of non-identical protofilaments that comprise residues V12–V40 (human Arctic fold A) and E11–G37 (human Arctic fold B). They have a substructure (residues F20–G37) in common with the folds of type I and type II Aβ42. When compared to the structures of wild-type Aβ42 filaments, there are subtle conformational changes in the human Arctic folds, because of the lack of a side chain at G22, which may strengthen hydrogen bonding between mutant Aβ molecules and promote filament formation. A minority of Aβ42 filaments of type II was also present, as were tau paired helical filaments. In addition, we report the cryo-EM structures of Aβ filaments with the Arctic mutation from mouse knock-in line AppNL−G−F. Most filaments are made of two identical mutant protofilaments that extend from D1 to G37 (AppNL−G−F murine Arctic fold). In a minority of filaments, two dimeric folds pack against each other in an anti-parallel fashion. The AppNL−G−F murine Arctic fold differs from the human Arctic folds, but shares some substructure.Item Cryo-EM structures of Aβ40 filaments from the leptomeninges of individuals with Alzheimer’s disease and cerebral amyloid angiopathy(Springer Nature, 2023-12-04) Yang, Yang; Murzin, Alexey G.; Peak-Chew, Sew; Franco, Catarina; Garringer, Holly J.; Newell, Kathy L.; Ghetti, Bernardino; Goedert, Michel; Scheres, Sjors H. W.; Pathology and Laboratory Medicine, School of MedicineWe used electron cryo-microscopy (cryo-EM) to determine the structures of Aβ40 filaments from the leptomeninges of individuals with Alzheimer's disease and cerebral amyloid angiopathy. In agreement with previously reported structures, which were solved to a resolution of 4.4 Å, we found three types of filaments. However, our new structures, solved to a resolution of 2.4 Å, revealed differences in the sequence assignment that redefine the fold of Aβ40 peptides and their interactions. Filaments are made of pairs of protofilaments, the ordered core of which comprises D1-G38. The different filament types comprise one, two or three protofilament pairs. In each pair, residues H14-G37 of both protofilaments adopt an extended conformation and pack against each other in an anti-parallel fashion, held together by hydrophobic interactions and hydrogen bonds between main chains and side chains. Residues D1-H13 fold back on the adjacent parts of their own chains through both polar and non-polar interactions. There are also several additional densities of unknown identity. Sarkosyl extraction and aqueous extraction gave the same structures. By cryo-EM, parenchymal deposits of Aβ42 and blood vessel deposits of Aβ40 have distinct structures, supporting the view that Alzheimer's disease and cerebral amyloid angiopathy are different Aβ proteinopathies.Item Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging(Wiley, 2019-06) Shi, Jianjian; Surma, Michelle; Yang, Yang; Wei, Lei; Pediatrics, School of MedicineIn this study, we investigated the pathophysiological impact of Rho-associated coiled-coil–containing protein kinase (ROCK)1 and ROCK2 double deletion vs. single deletion on cardiac remodeling. Utilizing a cardiomyocyte-specific and tamoxifen-inducible MerCreMer recombinase (MCM), 3 mouse lines (MCM/ROCK1fl/fl/ROCK2fl/fl, MCM/ROCK1fl/fl, and MCM/ROCK2fl/fl) were generated. As early as 5 d after inducible deletion, the double ROCK knockout hearts exhibited reduced phosphorylation of myosin light chain (MLC) and focal adhesion kinase (FAK), supporting a role for ROCK activity in regulating the nonsarcomeric cytoskeleton. Moreover, the autophagy marker microtubule-associated proteins 1A-1B light chain 3B was increased in the double ROCK knockout, and these early molecular features persisted throughout aging. Mechanistically, the double ROCK knockout promoted age-associated or starvation-induced autophagy concomitant with reduced protein kinase B (AKT), mammalian target of rapamycin (mTOR), Unc-51–like kinase signaling, and cardiac fibrosis. In contrast, ROCK2 knockout hearts showed increased phosphorylated (p)-MLC and p-FAK levels, which were mostly attributable to a compensatory ROCK1 overactivation. Autophagy was inhibited at the baseline accompanying increased mTOR activity, leading to increased cardiac fibrosis in the ROCK2 knockout hearts. Finally, the loss of ROCK1 had no significant effect on p-MLC and p-FAK levels, mTOR signaling, or autophagy at baseline. In summary, deletions of ROCK isoforms in cardiomyocytes have different, even opposite, effects on endogenous ROCK activity and the MLC/FAK/AKT/mTOR signaling pathway, which is involved in autophagy and fibrosis of the heart.Item Early Cost Realization and College Choice(Sage, 2021) Yoon, Haewon; Yang, Yang; Morewedge, Carey K.; Kelley School of BusinessStudent loans defer the cost of college until after graduation, allowing many students access to higher lifetime earnings and colleges and universities they otherwise could not afford. Even with student loans, however, the authors find that students psychologically realize the financial costs of a college education long before their loan repayments begin. This early cost realization frames financial decisions between most pairs of colleges as an intertemporal trade-off. Students choose between investments with (1) smaller short-term costs but smaller long-term returns (a lower-cost, lower-return [LC-LR] college) and (2) larger short-term costs but larger long-term returns (a higher-cost, higher-return [HC-HR] college). The authors find that early cost realization increases preferences for LC-LR colleges—preferences that could reduce lifetime earnings—in both simulations and experiments. Preferences for LC-LR colleges are pronounced among financially impatient students and in choice pairs of LC-LR and HC-HR colleges where the equilibrium is set at a low-discount-rate threshold. A return-on-investment strategy, future uncertainty, and debt aversion cannot explain these results. A decision aid synchronizing the psychological realization of costs and benefits reduced preferences for LC-LR colleges, illustrating that the preference is constructed and receptive to interventions.Item Emerging tick-borne infections in mainland China: an increasing public health threat(Elsevier, 2015-12) Fang, Li-Qun; Liu, Kun; Li, Xin-Lou; Liang, Song; Yang, Yang; Yao, Hong-Wu; Sun, Ruo-Xi; Sun, Ye; Chen, Wan-Jun; Zuo, Shu-Qing; Ma, Mai-Juan; Li, Hao; Jiang, Jia-Fu; Liu, Wei; Yang, X. Frank; Gray, Gregory C.; Krause, Peter J.; Cao, Wu-Chun; Department of Microbiology & Immunology, IU School of MedicineSince the beginning of the 1980s, 33 emerging tick-borne agents have been identified in mainland China, including eight species of spotted fever group rickettsiae, seven species in the family Anaplasmataceae, six genospecies in the complex Borrelia burgdorferi sensu lato, 11 species of Babesia, and the virus causing severe fever with thrombocytopenia syndrome. In this Review we have mapped the geographical distributions of human cases of infection. 15 of the 33 emerging tick-borne agents have been reported to cause human disease, and their clinical characteristics have been described. The non-specific clinical manifestations caused by tick-borne pathogens present a major diagnostic challenge and most physicians are unfamiliar with the many tick-borne diseases that present with non-specific symptoms in the early stages of the illness. Advances in and application of modern molecular techniques should help with identification of emerging tick-borne pathogens and improve laboratory diagnosis of human infections. We expect that more novel tick-borne infections in ticks and animals will be identified and additional emerging tick-borne diseases in human beings will be discovered.Item Enhanced Antibacterial Effect on Zirconia Implant Abutment by Silver Linear-Beam Ion Implantation(MDPI, 2023-01-13) Yang, Yang; Liu, Mingyue; Yang, Zhen; Lin, Wei-Shao; Chen, Li; Tan, Jianguo; Prosthodontics, School of DentistryPeri-implant lesions, such as peri-implant mucositis and peri-implantitis, are bacterial-derived diseases that happen around dental implants, compromising the long-term stability and esthetics of implant restoration. Here, we report a surface-modification method on zirconia implant abutment using silver linear-beam ion implantation to reduce the bacterial growth around the implant site, thereby decreasing the prevalence of peri-implant lesions. The surface characteristics of zirconia after ion implantation was evaluated using energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and a contact-angle device. The antibacterial properties of implanted zirconia were evaluated using Streptococcus mutans and Porphyromonas gingivalis. The biocompatibility of the material surface was evaluated using human gingival fibroblasts. Our study shows that the zirconia surface was successfully modified with silver nanoparticles by using the ion-implantation method. The surface modification remained stable, and the silver-ion elution was below 1 ppm after one-month of storage. The modified surface can effectively eliminate bacterial growth, while the normal gingiva’s cell growth is not interfered with. The results of the study demonstrate that a silver-ion-implanted zirconia surface possesses good antibacterial properties and good biocompatibility. The surface modification using silver-ion implantation is a promising method for future usage.
- «
- 1 (current)
- 2
- 3
- »