- Browse by Author
Browsing by Author "Yang, Y."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item CD29 of human umbilical cord mesenchymal stem cells is required for expansion of CD34+ cells(Wiley, 2014-12) Yang, Y.; Hu, M.; Zhang, Y.; Li, H.; Miao, Z.; Medical and Molecular Genetics, School of MedicineObjectives: Human umbilical cord mesenchymal stem cells (hUCMSCs) play a critical role in expanding haematopoietic stem cells (HSCs) by providing the essential microenvironment for haematopoiesis. In this study, we sought to investigate whether CD29 of hUCMSCs would play a key role in the ability of hUCMSCs to help expand HSCs in vivo and in vitro. Material and methods: To investigate whether CD29 of hUCMSCs would play a key role for the ability of hUCMSCs to expand HSCs, soluble anti-CD29 antibody was added to co-cultures of hUCMSCs and cord blood (CB) CD34(+) cells. It significantly blocked expansion of CB CD34(+) cells induced by hUCMSCs. Using CD29-deficient hUCMSCs models, long-term culture-initiating cell and non-obese diabetic/severe combined immunodeficient disease mouse repopulating cell assay, revealed that CB CD34(+) cells co-cultured with CD29-deficient hUCMSCs only retained the capacity of multipotent differentiation for 5 weeks at the most. Results: Soluble anti-CD29 antibody significantly blocked expansion of CB CD34(+) cells induced by hUCMSCs. CB CD34(+) cells co-cultured with CD29-deficient hUCMSCs only retained the capacity of multipotent differentiation for 5 weeks at the most. Conclusions: CB CD34(+) cells co-cultured with CD29-deficient hUCMSCs gave rise to all major haematopoietic lineages, but failed to engraft long term.Item Harmonic Analysis and Practical Implementation of a Two-Phase Microgrid System(IEEE, 2015-03) Alibeik, Maryam; dos Santos, Euzeli C., Jr.; Yang, Y.; Wang, X.; Blaabjerg, F.; Department of Electrical and Computer Engineering, School of Engineering and TechnologyThis paper analyzes the harmonic contents of a non-linear load connected to a two-phase microgrid system. Although having the same harmonic content as the single-phase power system when supplying a non-linear load under balanced conditions, the two-phase microgrid system presents the following advantages: 1) constant power through the power line at the balanced condition; 2) two voltages i.e., line-to-line and phase voltages, available by using a three wire system; 3) optimized voltage utilization compared to a three-phase system; and 4) a direct connection of both symmetrical two-phase and single-phase electrical machines. This paper presents an approach for analyzing the harmonics of a two-phase non-linear load in a balanced and unbalanced cases. The mathematical model for the symmetrical component of an unbalanced two-phase system has also been presented in this paper. Finally, a practical implementation of the two-phase system has been performed, where different types of loads are connected to the two-phase power line to test the voltage control performance.Item Targeting Neuroinflammation to Treat Alzheimer's Disease(Springer, 2017-12) Ardura-Fabregat, A.; Boddeke, E. W. G. M.; Boza-Serrano, A.; Brioschi, S.; Castro-Gomez, S.; Ceyzériat, K.; Dansokho, C.; Dierkes, T.; Gelders, G.; Heneka, Michael T.; Hoeijmakers, L.; Hoffmann, A.; Iaccarino, L.; Jahnert, S.; Kuhbandner, K.; Landreth, G.; Lonnemann, N.; Löschmann, P. A.; McManus, R. M.; Paulus, A.; Reemst, K.; Sanchez-Caro, J. M.; Tiberi, A.; Perren, A. van der; Vautheny, A.; Venegas, C.; Webers, A.; Weydt, P.; Wijasa, T. S.; Xiang, X.; Yang, Y.; Neurology, School of MedicineOver the past few decades, research on Alzheimer's disease (AD) has focused on pathomechanisms linked to two of the major pathological hallmarks of extracellular deposition of beta-amyloid peptides and intra-neuronal formation of neurofibrils. Recently, a third disease component, the neuroinflammatory reaction mediated by cerebral innate immune cells, has entered the spotlight, prompted by findings from genetic, pre-clinical, and clinical studies. Various proteins that arise during neurodegeneration, including beta-amyloid, tau, heat shock proteins, and chromogranin, among others, act as danger-associated molecular patterns, that-upon engagement of pattern recognition receptors-induce inflammatory signaling pathways and ultimately lead to the production and release of immune mediators. These may have beneficial effects but ultimately compromise neuronal function and cause cell death. The current review, assembled by participants of the Chiclana Summer School on Neuroinflammation 2016, provides an overview of our current understanding of AD-related immune processes. We describe the principal cellular and molecular players in inflammation as they pertain to AD, examine modifying factors, and discuss potential future therapeutic targets.