- Browse by Author
Browsing by Author "Yang, Lin"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item CNS-Native Myeloid Cells Drive Immune Suppression in the Brain Metastatic Niche through Cxcl10(Cell Press, 2020) Guldner, Ian H.; Wang, Qingfei; Yang, Lin; Golomb, Samantha M.; Zhao, Zhuo; Lopez, Jacqueline A.; Brunory, Abigail; Howe, Erin N.; Zhang, Yizhe; Palakurthi, Bhavana; Barron, Martin; Gao, Hongyu; Xuei, Xiaoling; Liu, Yunlong; Li, Jun; Chen, Danny Z.; Landreth, Gary E.; Zhang, Siyuan; Medical and Molecular Genetics, School of MedicineBrain metastasis (br-met) develops in an immunologically unique br-met niche. Central nervous system-native myeloid cells (CNS-myeloids) and bone-marrow-derived myeloid cells (BMDMs) cooperatively regulate brain immunity. The phenotypic heterogeneity and specific roles of these myeloid subsets in shaping the br-met niche to regulate br-met outgrowth have not been fully revealed. Applying multimodal single-cell analyses, we elucidated a heterogeneous but spatially defined CNS-myeloid response during br-met outgrowth. We found Ccr2+ BMDMs minimally influenced br-met while CNS-myeloid promoted br-met outgrowth. Additionally, br-met-associated CNS-myeloid exhibited downregulation of Cx3cr1. Cx3cr1 knockout in CNS-myeloid increased br-met incidence, leading to an enriched interferon response signature and Cxcl10 upregulation. Significantly, neutralization of Cxcl10 reduced br-met, while rCxcl10 increased br-met and recruited VISTAHi PD-L1+ CNS-myeloid to br-met lesions. Inhibiting VISTA- and PD-L1-signaling relieved immune suppression and reduced br-met burden. Our results demonstrate that loss of Cx3cr1 in CNS-myeloid triggers a Cxcl10-mediated vicious cycle, cultivating a br-met-promoting, immune-suppressive niche.Item Delineating the molecular and phenotypic spectrum of the SETD1B-related syndrome(Elsevier, 2021-11) Weerts, Marjolein J.A.; Lanko, Kristina; Guzmán-Vega, Francisco J.; Jackson, Adam; Ramakrishnan, Reshmi; Cardona-Londoño, Kelly J.; Peña-Guerra, Karla A.; van Bever, Yolande; van Paassen, Barbara W.; Kievit, Anneke; van Slegtenhorst, Marjon; Allen, Nicholas M.; Kehoe, Caroline M.; Robinson, Hannah K.; Pang, Lewis; Banu, Selina H.; Zaman, Mashaya; Efthymiou, Stephanie; Houlden, Henry; Järvelä, Irma; Lauronen, Leena; Määttä, Tuomo; Schrauwen, Isabelle; Leal, Suzanne M.; Ruivenkamp, Claudia A.L.; Barge-Schaapveld, Daniela Q.C.M.; Peeters-Scholte, Cacha M.P.C.D.; Galehdari, Hamid; Mazaheri, Neda; Sisodiya, Sanjay M.; Harrison, Victoria; Sun, Angela; Thies, Jenny; Pedroza, Luis Alberto; Lara-Taranchenko, Yana; Chinn, Ivan K.; Lupski, James R.; Garza-Flores, Alexandra; McGlothlin, Jeffery; Yang, Lin; Huang, Shaoping; Wang, Xiaodong; Jewett, Tamison; Rosso, Gretchen; Lin, Xi; Mohammed, Shehla; Merritt, J. Lawrence, II.; Mirzaa, Ghayda M.; Timms, Andrew E.; Scheck, Joshua; Elting, Mariet W.; Polstra, Abeltje M.; Schenck, Lauren; Ruzhnikov, Maura R.Z.; Vetro, Annalisa; Montomoli, Martino; Guerrini, Renzo; Koboldt, Daniel C.; Mihalic Mosher, Theresa; Pastore, Matthew T.; McBride, Kim L.; Peng, Jing; Pan, Zou; Willemsen, Marjolein; Koning, Susanne; Turnpenny, Peter D.; de Vries, Bert B.A.; Gilissen, Christian; Pfundt, Rolph; Lees, Melissa; Braddock, Stephen R.; Klemp, Kara C.; Vansenne, Fleur; van Gijn, Marielle E.; Quindipan, Catherine; Deardorff, Matthew A.; Hamm, J. Austin; Putnam, Abbey M.; Baud, Rebecca; Walsh, Laurence; Lynch, Sally A.; Baptista, Julia; Person, Richard E.; Monaghan, Kristin G.; Crunk, Amy; Keller-Ramey, Jennifer; Reich, Adi; Elloumi, Houda Zghal; Alders, Marielle; Kerkhof, Jennifer; McConkey, Haley; Haghshenas, Sadegheh; Maroofian, Reza; Sadikovic, Bekim; Banka, Siddharth; Arold, Stefan T.; Barakat, Tahsin Stefan; Medical and Molecular Genetics, School of MedicinePurpose: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. Methods: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. Results: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. Conclusion: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.Item IMAGING GENOMICS(2018) Huang, Heng; Shen, L. I.; Thompson, Paul M.; Huang, Kun; Huang, Junzhou; Yang, Lin; Radiology and Imaging Sciences, School of MedicineItem Segmentation of Vascular Structures and Hematopoietic Cells in 3-D Microscopy Images and Quantitative Analysis(2015-03) Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.; Department of Pediatrics, IU School of MedicineIn this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.